Статья
Циркулирующий нейрегулин-1 и хроническая сердечная недостаточность с сохранной фракцией выброса
Хроническая сердечная недостаточность (ХСН) с сохранной фракцией выброса (ХСНсФВ) представляет нерешенную социальнозначимую проблему, поскольку ассоциируется с высоким уровнем заболеваемости и смертности. Ранние маркеры данной патологии отсутствуют, а подходы к лечению не разработаны. Существует необходимость дальнейшего изучения механизмов развития ХСНсФВ для выявления терапевтических мишеней. Согласно современным представлениям о патогенезе, важная роль в развитии ХСНсФВ отводится системному воспалению и дисфункции эндотелия, которые способствуют формированию фиброза миокарда и нарушению процессов релаксации кардиомиоцитов, приводя к диастолической дисфункции и повышению давления наполнения левого желудочка (ЛЖ). Нейрегулин-1 (NRG-1) – паракринный фактор роста и естественный агонист рецепторов семейства ErbB, синтезируемый эндотелием коронарных микрососудов. NRG-1 / ErbB4 система сердца активируется на ранних стадиях ХСНнФВ, повышая устойчивость кардиомиоцитов к воздействию окислительного стресса. Доклинические и клинические (фазы II и III) исследования показывают, что терапия рекомбинантным NRG-1 приводит к улучшению сократительной способности миокарда, развитию обратного ремоделирования ЛЖ. Результаты последних исследований свидетельствуют о возможных противовоспалительных и антифибротических эффектах NRG-1, что формирует предпосылки для изучения активности данной системы у больных с ХСНсФВ.
1. Pfeffer MA, Shah AM, Borlaug BA. Heart Failure With Preserved Ejection Fraction In Perspective. Circulation Research. 2019;124(11):1598–617. DOI: 10.1161/CIRCRESAHA.119.313572
2. Фомин И.В. Хроническая сердечная недостаточность в Российской Федерации: что сегодня мы знаем и что должны делать. Российский Кардиологический Журнал. 2016;8:7-13. DOI: 10.15829/1560-4071-2016-8-7-13
3. Levy D. Echocardiographically Detected Left Ventricular Hypertrophy: Prevalence and Risk Factors: The Framingham Heart Study. Annals of Internal Medicine. 1988;108(1):7–13. DOI: 10.7326/0003- 4819-108-1-7
4. Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haouzi A et al. Outcome of heart failure with preserved ejection fraction in a population-based study. The New England Journal of Medicine. 2006;355(3):260–9. DOI: 10.1056/NEJMoa051530
5. Forman D, Gaziano JM. Irbesartan in patients with heart failure and preserved ejection fraction. Current Cardiovascular Risk Reports. 2009;3(5):311–2. DOI: 10.1007/s12170-009-0056-1
6. Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. The Lancet. 2003;362(9386):777–81. DOI: 10.1016/S0140-6736(03)14285-7
7. Cleland JGF, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J et al. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. European Heart Journal. 2006;27(19):2338–45. DOI: 10.1093/eurheartj/ehl250
8. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B et al. Spironolactone for Heart Failure with Preserved Ejection Fraction. New England Journal of Medicine. 2014;370(15):1383–92. DOI: 10.1056/NEJMoa1313731
9. Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP et al. Angiotensin–Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. New England Journal of Medicine. 2019;381(17):1609–20. DOI: 10.1056/NEJMoa1908655
10. Obokata M, Reddy YNV, Borlaug BA. Diastolic Dysfunction and Heart Failure With Preserved Ejection Fraction: Understanding Mechanisms by Using Noninvasive Methods. JACC: Cardiovascular Imaging. 2020;13(1):245–57. DOI: 10.1016/j.jcmg.2018.12.034
11. Zile MR, Baicu CF, Ikonomidis JS, Stroud RE, Nietert PJ, Bradshaw AD et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation. 2015;131(14):1247–59. DOI: 10.1161/CIRCULATIONAHA.114.013215
12. Ito H, Ishida M, Makino W, Goto Y, Ichikawa Y, Kitagawa K et al. Cardiovascular magnetic resonance feature tracking for characterization of patients with heart failure with preserved ejection fraction: correlation of global longitudinal strain with invasive diastolic functional indices. Journal of Cardiovascular Magnetic Resonance. 2020;22(1):42. DOI: 10.1186/s12968-020-00636-w
13. Giamouzis G, Schelbert EB, Butler J. Growing Evidence Linking Microvascular Dysfunction With Heart Failure With Preserved Ejection Fraction. Journal of the American Heart Association. 2016;5(2):e003259. DOI: 10.1161/JAHA.116.003259
14. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. Journal of the American College of Cardiology. 2013;62(4):263–71. DOI: 10.1016/j.jacc.2013.02.092
15. Lam CSP, Lyass A, Kraigher-Krainer E, Massaro JM, Lee DS, Ho JE et al. Cardiac Dysfunction and Noncardiac Dysfunction as Precursors of Heart Failure With Reduced and Preserved Ejection Fraction in the Community. Circulation. 2011;124(1):24–30. DOI: 10.1161/CIRCULATIONAHA.110.979203
16. Ather S, Chan W, Bozkurt B, Aguilar D, Ramasubbu K, Zachariah AA et al. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. Journal of the American College of Cardiology. 2012;59(11):998–1005. DOI: 10.1016/j.jacc.2011.11.040
17. Taube A, Schlich R, Sell H, Eckardt K, Eckel J. Inflammation and metabolic dysfunction: links to cardiovascular diseases. American Journal of Physiology-Heart and Circulatory Physiology. 2012;302(11):H2148–65. DOI: 10.1152/ajpheart.00907.2011
18. Jelic S, Lederer DJ, Adams T, Padeletti M, Colombo PC, Factor PH et al. Vascular Inflammation in Obesity and Sleep Apnea. Circulation. 2010;121(8):1014–21. DOI: 10.1161/CIRCULATIONAHA.109.900357
19. Haass M, Kitzman DW, Anand IS, Miller A, Zile MR, Massie BM et al. Body Mass Index and Adverse Cardiovascular Outcomes in Heart Failure Patients With Preserved Ejection Fraction: Results From the Irbesartan in Heart Failure With Preserved Ejection Fraction (I-PRESERVE) Trial. Circulation: Heart Failure. 2011;4(3):324–31. DOI: 10.1161/CIRCHEARTFAILURE.110.959890
20. Tian N, Moore RS, Braddy S, Rose RA, Gu J-W, Hughson MD et al. Interactions between oxidative stress and inflammation in salt-sensitive hypertension. American Journal of Physiology-Heart and Circulatory Physiology. 2007;293(6):H3388–95. DOI: 10.1152/ajpheart.00981.2007
21. Glezeva N, Voon V, Watson C, Horgan S, McDonald K, Ledwidge M et al. Exaggerated Inflammation and Monocytosis Associate With Diastolic Dysfunction in Heart Failure With Preserved Ejection Fraction: Evidence of M2 Macrophage Activation in Disease Pathogenesis. Journal of Cardiac Failure. 2015;21(2):167–77. DOI: 10.1016/j.cardfail.2014.11.004
22. Westermann D, Lindner D, Kasner M, Zietsch C, Savvatis K, Escher F et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circulation. Heart Failure. 2011;4(1):44–52. DOI: 10.1161/ CIRCHEARTFAILURE.109.931451
23. Tarbit E, Singh I, Peart JN, Rose’Meyer RB. Biomarkers for the identification of cardiac fibroblast and myofibroblast cells. Heart Failure Reviews. 2019;24(1):1–15. DOI: 10.1007/s10741-018-9720-1
24. Krüger M, Kötter S, Grützner A, Lang P, Andresen C, Redfield MM et al. Protein Kinase G Modulates Human Myocardial Passive Stiffness by Phosphorylation of the Titin Springs. Circulation Research. 2009;104(1):87–94. DOI: 10.1161/CIRCRESAHA.108.184408
25. Меерсон Ф.3., Уголев А.А. Нарушение мембранного транспорта кальция как общее звено патогенеза различных форм недостаточности сердца. Кардиология. 1980;20(1):68-75
26. Runte KE, Bell SP, Selby DE, Häußler TN, Ashikaga T, LeWinter MM et al. Relaxation and the Role of Calcium in Isolated Contracting Myocardium From Patients With Hypertensive Heart Disease and Heart Failure With Preserved Ejection Fraction. Circulation: Heart Failure. 2017;10(8):e004311. DOI: 10.1161/CIRCHEARTFAILURE.117.004311
27. De Keulenaer GW, Feyen E, Dugaucquier L, Shakeri H, Shchendrygina A, Belenkov YN et al. Mechanisms of the Multitasking Endothelial Protein NRG-1 as a Compensatory Factor During Chronic Heart Failure. Circulation: Heart Failure. 2019;12(10):e006288. DOI: 10.1161/ CIRCHEARTFAILURE.119.006288
28. Ryzhov S, Matafonov A, Galindo CL, Zhang Q, Tran T-L, Lenihan DJ et al. ERBB signaling attenuates proinflammatory activation of nonclassical monocytes. American Journal of Physiology-Heart and Circulatory Physiology. 2017;312(5):H907–18. DOI: 10.1152/ajpheart.00486.2016
29. Liu W, Zscheppang K, Murray S, Nielsen HC, Dammann CEL. The ErbB4 receptor in fetal rat lung fibroblasts and epithelial type II cells. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2007;1772(7):737–47. DOI: 10.1016/j.bbadis.2007.04.008
30. Xu Z, Jiang J, Ford G, Ford BD. Neuregulin-1 is neuroprotective and attenuates inflammatory responses induced by ischemic stroke. Biochemical and Biophysical Research Communications. 2004;322(2):440–6. DOI: 10.1016/j.bbrc.2004.07.149
31. Galindo CL, Ryzhov S, Sawyer DB. Neuregulin as a Heart Failure Therapy and Mediator of Reverse Remodeling. Current Heart Failure Reports. 2014;11(1):40–9. DOI: 10.1007/s11897-013-0176-2
32. García-Rivello H, Taranda J, Said M, Cabeza-Meckert P, Vila-Petroff M, Scaglione J et al. Dilated cardiomyopathy in Erb-b4-deficient ventricular muscle. American Journal of Physiology-Heart and Circulatory Physiology. 2005;289(3):H1153–60. DOI: 10.1152/ajpheart.00048.2005
33. Galindo CL, Kasasbeh E, Murphy A, Ryzhov S, Lenihan S, Ahmad FA et al. Anti‐Remodeling and Anti‐Fibrotic Effects of the Neuregulin‐1β Glial Growth Factor 2 in a Large Animal Model of Heart Failure. Journal of the American Heart Association. 2014;3(5):e000773. DOI: 10.1161/JAHA.113.000773
34. Bersell K, Arab S, Haring B, Kühn B. Neuregulin1/ErbB4 Signaling Induces Cardiomyocyte Proliferation and Repair of Heart Injury. Cell. 2009;138(2):257–70. DOI: 10.1016/j.cell.2009.04.060
35. Gao R, Zhang J, Cheng L, Wu X, Dong W, Yang X et al. A Phase II, Randomized, Double-Blind, Multicenter, Based on Standard Therapy, Placebo-Controlled Study of the Efficacy and Safety of Recombinant Human Neuregulin-1 in Patients With Chronic Heart Failure. Journal of the American College of Cardiology. 2010;55(18):1907–14. DOI: 10.1016/j.jacc.2009.12.044
36. Jabbour A, Hayward CS, Keogh AM, Kotlyar E, McCrohon JA, England JF et al. Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. European Journal of Heart Failure. 2011;13(1):83–92. DOI: 10.1093/eurjhf/ hfq152
37. Geisberg C, Wang G, Safa RN, Smith HM, Anderson B, Peng X-Y et al. Circulating neuregulin-1β levels vary according to the angiographic se- verity of coronary artery disease and ischemia: Coronary Artery Disease. 2011;22(8):577–82. DOI: 10.1097/MCA.0b013e32834d3346
38. Geisberg CA, Abdallah WM, da Silva M, Silverstein C, Smith HM, Abramson V et al. Circulating Neuregulin During the Transition From Stage A to Stage B/C Heart Failure in a Breast Cancer Cohort. Journal of Cardiac Failure. 2013;19(1):10–5. DOI: 10.1016/j.cardfail.2012.11.006
39. Ky B, Kimmel SE, Safa RN, Putt ME, Sweitzer NK, Fang JC et al. Neuregulin-1β Is Associated With Disease Severity and Adverse Outcomes in Chronic Heart Failure. Circulation. 2009;120(4):310–7. DOI: 10.1161/CIRCULATIONAHA.109.856310
40. Zeng Z, Gui C, Nong Q, Du F, Zhu L. Serum neuregulin-1β levels are positively correlated with VEGF and Angiopoietin-1 levels in patients with diabetes and unstable angina pectoris. International Journal of Cardiology. 2013;168(3):3077–9. DOI: 10.1016/j.ijcard.2013.04.088
41. Hage C, Wärdell E, Linde C, Donal E, Lam CSP, Daubert C et al. Circulating neuregulin1‐β in heart failure with preserved and reduced left ventricular ejection fraction. ESC Heart Failure. 2020;7(2):445–55. DOI: 10.1002/ehf2.12615
42. Russell KS, Stern DF, Polverini PJ, Bender JR. Neuregulin activation of ErbB receptors in vascular endothelium leads to angiogenesis. American Journal of Physiology-Heart and Circulatory Physiology. 1999;277(6):H2205–11. DOI: 10.1152/ajpheart.1999.277.6.H2205
43. Lemmens K, Segers VFM, Demolder M, De Keulenaer GW. Role of Neuregulin-1/ErbB2 Signaling in Endothelium-Cardiomyocyte Cross-talk. Journal of Biological Chemistry. 2006;281(28):19469–77. DOI: 10.1074/jbc.M600399200
44. Matsubara J, Sugiyama S, Nozaki T, Sugamura K, Konishi M, Ohba K et al. Pentraxin 3 Is a New Inflammatory Marker Correlated With Left Ventricular Diastolic Dysfunction and Heart Failure With Normal Ejection Fraction. Journal of the American College of Cardiology. 2011;57(7):861–9. DOI: 10.1016/j.jacc.2010.10.018
45. Wisniacki N. Insulin resistance and inflammatory activation in older patients with systolic and diastolic heart failure. Heart. 2005;91(1):32–7. DOI: 10.1136/hrt.2003.029652
46. Wu C-K, Lee J-K, Chiang F-T, Yang C-H, Huang S-W, Hwang J-J et al. Plasma levels of tumor necrosis factor-α and interleukin-6 are associated with diastolic heart failure through downregulation of sarcoplasmic reticulum Ca2+ ATPase: Critical Care Medicine. 2011;39(5):984–92. DOI: 10.1097/CCM.0b013e31820a91b9
47. Collier P, Watson CJ, Voon V, Phelan D, Jan A, Mak G et al. Can emerging biomarkers of myocardial remodelling identify asymptomatic hypertensive patients at risk for diastolic dysfunction and diastolic heart failure? European Journal of Heart Failure. 2011;13(10):1087– 95. DOI: 10.1093/eurjhf/hfr079
48. Zach V, Bähr FL, Edelmann F. Suppression of Tumourigenicity 2 in Heart Failure With Preserved Ejection Fraction. Cardiac Failure Review. 2020;6:1–7. DOI: 10.15420/cfr.2019.10
49. Okuyan E, Uslu A, Çakar MA, Sahin I, Önür I, Enhos A et al. Homocysteine Levels in Patients with Heart Failure with Preserved Ejection Fraction. Cardiology. 2010;117(1):21–7. DOI: 10.1159/000320106
50. Frantz S, Falcao-Pires I, Balligand J-L, Bauersachs J, Brutsaert D, Ciccarelli M et al. The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC: Immunity in chronic heart failure. European Journal of Heart Failure. 2018;20(3):445–59. DOI: 10.1002/ejhf.1138
51. Patel RB, Colangelo LA, Reiner AP, Gross MD, Jacobs DR, Launer LJ et al. Cellular Adhesion Molecules in Young Adulthood and Cardiac Function in Later Life. Journal of the American College of Cardiology. 2020;75(17):2156–65. DOI: 10.1016/j. jacc.2020.02.060
52. Leuschner F, Nahrendorf M. Novel functions of macrophages in the heart: insights into electrical conduction, stress, and diastolic dysfunction. European Heart Journal. 2020;41(9):989–94. DOI: 10.1093/eurheartj/ehz159
53. Zhang Y, Bauersachs J, Langer HF. Immune mechanisms in heart failure: Heart failure and immune mechanisms. European Journal of Heart Failure. 2017;19(11):1379–89. DOI: 10.1002/ejhf.942
54. Fujiu K, Nagai R. Contributions of cardiomyocyte–cardiac fibroblast– immune cell interactions in heart failure development. Basic Research in Cardiology. 2013;108(4):357. DOI: 10.1007/s00395-013-0357-x
55. van Gils JM, Zwaginga JJ, Hordijk PL. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. Journal of Leukocyte Biology. 2009;85(2):195–204. DOI: 10.1189/jlb.0708400
56. Riehle C, Bauersachs J. Key inflammatory mechanisms underlying heart failure. Herz. 2019;44(2):96–106. DOI: 10.1007/s00059-019-4785-8
57. Vermeulen Z, Hervent A-S, Dugaucquier L, Vandekerckhove L, Rombouts M, Beyens M et al. Inhibitory actions of the NRG-1/ErbB4 pathway in macrophages during tissue fibrosis in the heart, skin, and lung. American Journal of Physiology. Heart and Circulatory Physiology. 2017;313(5):H934–45. DOI: 10.1152/ajpheart.00206.2017
58. Schumacher MA, Hedl M, Abraham C, Bernard JK, Lozano PR, Hsieh JJ et al. ErbB4 signaling stimulates pro-inflammatory macrophage apoptosis and limits colonic inflammation. Cell Death & Disease. 2017;8(2):e2622–e2622. DOI: 10.1038/cddis.2017.42
59. Wu L, Walas S, Leung W, Sykes DB, Wu J, Lo EH et al. Neuregulin1-β Decreases IL-1β-Induced Neutrophil Adhesion to Human Brain Microvascular Endothelial Cells. Translational Stroke Research. 2015;6(2):116–24. DOI: 10.1007/s12975-014-0347-9
60. Duca F, Kammerlander AA, Zotter-Tufaro C, Aschauer S, Schwaiger ML, Marzluf BA et al. Interstitial Fibrosis, Functional Status, and Outcomes in Heart Failure With Preserved Ejection Fraction: Insights From a Prospective Cardiac Magnetic Resonance Imaging Study. Circulation: Cardiovascular Imaging. 2016;9(12):e005277. DOI: 10.1161/CIRCIMAGING.116.005277
61. Kanagala P, Cheng ASH, Singh A, Khan JN, Gulsin GS, Patel P et al. Relationship Between Focal and Diffuse Fibrosis Assessed by CMR and Clinical Outcomes in Heart Failure With Preserved Ejection Fraction. JACC: Cardiovascular Imaging. 2019;12(11):2291–301. DOI: 10.1016/j.jcmg.2018.11.031
62. Kasner M, Westermann D, Lopez B, Gaub R, Escher F, Kühl U et al. Diastolic Tissue Doppler Indexes Correlate With the Degree of Collagen Expression and Cross-Linking in Heart Failure and Normal Ejection Fraction. Journal of the American College of Cardiology. 2011;57(8):977–85. DOI: 10.1016/j.jacc.2010.10.024
63. Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM. Coronary Microvascular Rarefaction and Myocardial Fibrosis in Heart Failure With Preserved Ejection Fraction. Circulation. 2015;131(6):550–9. DOI: 10.1161/CIRCULATIONAHA.114.009625
64. Su M-YM, Lin L-Y, Tseng Y-HE, Chang C-C, Wu C-K, Lin J-L et al. CMR-Verified Diffuse Myocardial Fibrosis Is Associated With Diastolic Dysfunction in HFpEF. JACC: Cardiovascular Imaging. 2014;7(10):991–7. DOI: 10.1016/j.jcmg.2014.04.022
65. Rommel K-P, von Roeder M, Latuscynski K, Oberueck C, Blazek S, Fengler K et al. Extracellular Volume Fraction for Characterization of Patients With Heart Failure and Preserved Ejection Fraction. Journal of the American College of Cardiology. 2016;67(15):1815–25. DOI: 10.1016/j.jacc.2016.02.018
66. Mascherbauer J, Marzluf BA, Tufaro C, Pfaffenberger S, Graf A, Wexberg P et al. Cardiac Magnetic Resonance Postcontrast T1 Time Is Associated With Outcome in Patients With Heart Failure and Preserved Ejection Fraction. Circulation: Cardiovascular Imaging. 2013;6(6):1056–65. DOI: 10.1161/CIRCIMAGING.113.000633
67. Gupte M, Lal H, Ahmad F, Sawyer DB, Hill MF. Chronic Neuregulin1β Treatment Mitigates the Progression of Postmyocardial Infarction Heart Failure in the Setting of Type 1 Diabetes Mellitus by Suppressing Myocardial Apoptosis, Fibrosis, and Key Oxidant-Producing Enzymes. Journal of Cardiac Failure. 2017;23(12):887–99. DOI: 10.1016/j.cardfail.2017.08.456
68. LeWinter MM, Granzier H. Cardiac Titin: A Multifunctional Giant. Circulation. 2010;121(19):2137–45. DOI: 10.1161/CIRCULATIONAHA.109.860171
69. Fürst DO, Osborn M, Nave R, Weber K. The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. Journal of Cell Biology. 1988;106(5):1563–72. DOI: 10.1083/jcb.106.5.1563
70. Trombitás K, Jin J-P, Granzier H. The Mechanically Active Domain of Titin in Cardiac Muscle. Circulation Research. 1995;77(4):856–61. DOI: 10.1161/01.RES.77.4.856
71. Trombitás K, Freiburg A, Centner T, Labeit S, Granzier H. Molecular Dissection of N2B Cardiac Titin’s Extensibility. Biophysical Journal. 1999;77(6):3189–96. DOI: 10.1016/S0006-3495(99)77149-3
72. Linke WA, Rudy DE, Centner T, Gautel M, Witt C, Labeit S et al. I-Band Titin in Cardiac Muscle Is a Three-Element Molecular Spring and Is Critical for Maintaining Thin Filament Structure. Journal of Cell Biology. 1999;146(3):631–44. DOI: 10.1083/jcb.146.3.631
73. Cazorla O, Freiburg A, Helmes M, Centner T, McNabb M, Wu Y et al. Differential Expression of Cardiac Titin Isoforms and Modulation of Cellular Stiffness. Circulation Research. 2000;86(1):59–67. DOI: 10.1161/01.RES.86.1.59
74. Borbély A, van der Velden J, Papp Z, Bronzwaer JGF, Edes I, Stienen GJM et al. Cardiomyocyte Stiffness in Diastolic Heart Failure. Circulation. 2005;111(6):774–81. DOI: 10.1161/01.CIR.0000155257.33485.6D
75. Borbély A, Falcao-Pires I, van Heerebeek L, Hamdani N, Édes I, Gavina C et al. Hypophosphorylation of the Stiff N2B Titin Isoform Raises Cardiomyocyte Resting Tension in Failing Human Myocardium. Circulation Research. 2009;104(6):780–6. DOI: 10.1161/CIRCRESAHA.108.193326
76. Hopf A-E, Andresen C, Kötter S, Isić M, Ulrich K, Sahin S et al. Diabetes-Induced Cardiomyocyte Passive Stiffening Is Caused by Impaired Insulin-Dependent Titin Modification and Can Be Modulated by Neuregulin-1. Circulation Research. 2018;123(3):342–55. DOI: 10.1161/CIRCRESAHA.117.312166
77. Adão R, Mendes-Ferreira P, Maia-Rocha C, Santos-Ribeiro D, Rodrigues PG, Vidal-Meireles A et al. Neuregulin-1 attenuates right ventricular diastolic stiffness in experimental pulmonary hypertension. Clinical and Experimental Pharmacology and Physiology. 2019;46(3):255–65. DOI: 10.1111/1440-1681.13043
78. Miao J, Huang S, Su YR, Lenneman CA, Wright M, Harrell FE et al. Effects of endogenous serum neuregulin-1β on morbidity and mortality in patients with heart failure and left ventricular systolic dysfunction. Biomarkers. 2018;23(7):704–8. DOI: 10.1080/1354750X.2018.1485054