1. Massi-Benedetti M. The cost of diabetes Type II in Europe: the CODE-2 Study. Diabetologia. 2002;45(7):S1-4. doi:10.1007/ s00125-002-0860-3.
2. Fishman SL, et al. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Mol Med. 2018;24(1):59. doi:10.1186/s10020-018-0060-3.
3. Jankauskas SS, Kansakar U, Varzideh F, et al. Heart failure in diabetes. Metabolism. 2021:154910. doi:10.1016/j.metabol.2021.154910.
4. Ruiz HH, Ramasamy R, Schmidt AM. Advanced glycation end products: building on the concept of the "Common Soil" in metabolic disease. Endocrinology. 2020;161(1). doi:10.1210/endocr/bqz006.
5. Shu J, Matarese A, Santulli G. Diabetes, body fat, skeletal muscle, and hypertension: the ominous chiasmus? J Clin Hypertens (Greenwich).2019;21(2):239-42. doi:10.1111/jch.13453.
6. Shu J, Santulli G. Update on peripheral artery disease: epidemiology and evidence-based facts. Atherosclerosis. 2018;275: 379-81. doi:10.1016/j.atherosclerosis.2018.05.033.
7. Mone P, Pansini A, Rizzo M, Minicucci F, Mauro C. St-elevation myocardial infarction patients with hyperglycemia: effects of intravenous adenosine. Am J Med Sci. 2021. doi:10.1016/j.amjms.2021.06.025.
8. Paramasivam G, Devasia T, Jayaram A, Rao MS, Vijayvergiya R, Nayak K. In-stent restenosis of drug-eluting stents in patients with diabetes mellitus: clinical presentation, angiographic features, and outcomes. Anatol J Cardiol. 2020;23(1):28-34. doi:10.14744/AnatolJCardiol.2019.72916.
9. Zhao L, Zhu W, Zhang X, He D, Guo C. Effect of diabetes mellitus on long-term outcomes after repeat drug-eluting stent implantation for in-stent restenosis. BMC Cardiovasc Disord. 2017;17(1):16. doi:10.1186/s12872-016-0445-6.
10. Бойцов С. А., Баланова Ю. А., Шальнова С. А. и др. Артериальная гипертония среди лиц 25-64 лет: распространенность, осведомленность, лечение и контроль по материалам исследования ЭССЕ. Кардиоваскулярная терапия и профилактика. 2014;13(4):4-14. doi:10.15829/1728-8800-2014-4-4-14.
11. Müller J, Barajas L.Electron microscopic and histochemical evidence for a tubular innervation in the renal cortex of the monkey. J Ultrastruct Res. 1972;41(5):533-49. doi:10.1016/s0022-5320(72)90054-8.
12. Mahfoud F, Schlaich M, Kindermann I, et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011;123:19406. doi:10.1161/CIRCULATIONAHA.110.991869.
13. Chen W, Chang Y, He L, et al. Effect of renal sympathetic denervation on hepatic glucose metabolism and blood pressure in a rat model of insulin resistance. J Hypertens. 2016;34:2465-74. doi:10.1097/HJH.0000000000001087.
14. Krum H, Schlaich MP, Sobotka PA, et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study [published correction appears in Lancet. 2014;383(9917):602. Sobotka, Paul A [added]. Lancet. 2014;383(9917):622-9. doi:10.1016/S01406736(13)62192-3.
15. Esler MD, Krum H, Schlaich M, et al. Renal sympathetic denervation for treatment of drug-resistant hypertension: one-year results from the Symplicity HTN-2 randomized, controlled trial. Circulation. 2012;126(25):2976-82. doi:10.1161/CIRCULATIONAHA.112.130880.
16. Townsend RR, Mahfoud F, Kandzari DE, et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTNOFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017;390(10108):2160-70. doi:10.1016/S01406736(17)32281-X.
17. Kandzari DE, Böhm M, Mahfoud F, et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet. 2018;391(10137):2346-55. doi:10.1016/S0140-6736(18)30951-6.
18. Sesa-Ashton G, Nolde JM, Muente I, et al. Catheter-Based Renal Denervation: 9-Year Follow-Up Data on Safety and Blood Pressure Reduction in Patients With Resistant Hypertension. 2023;80(4):811-9. doi:10.1161/HYPERTENSIONAHA.122.20853.
19. Barbato E, Azizi M, Schmieder RE, et al. Renal denervation in the management of hypertension in adults. A clinical consensus statement of the ESC Council on Hypertension and the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2023; 44(15):1313-30. doi:10.1093/eurheartj/ehad054.
20. Pan T, Guo JH, Ling L, et al. Effects of Multi-Electrode Renal Denervation on Insulin Sensitivity and Glucose Metabolism in a Canine Model of Type 2 Diabetes Mellitus. J Vasc Interv Radiol. 2018;29(5):731-8.e2. doi:10.1016/j.jvir.2017.12.011.
21. Mahfoud F, Cremers B, Janker J, et al. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension. 2012;60(2):419-24. doi:10.1161/HYPERTENSIONAHA.112.193870.
22. Verloop WL, Spiering W, Vink EE, et al. Denervation of the renal arteries in metabolic syndrome: the DREAMS-study. Hypertension. 2015;65(4):751-7. doi:10.1161/HYPERTENSIONAHA.114.04798.
23. Zhang Z, Liu K, Xiao S, et al. Effects of catheter based renal denervation on glycemic control and lipid levels: a systematic review and meta analysis. Acta Diabetol. 2021;58:603-14. doi:10.1007/s00592-020-01659-6.
24. Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative metaanalysis of 102 prospective studies. Lancet. 2010;375:2215-22. doi:10.1016/S0140-6736(10)60484-9.
25. Huggett RJ, Scott EM, Gilbey SG, et al. Impact of Type 2 Diabetes Mellitus on Sympathetic Neural Mechanisms in Hypertension. Circulation. 2003;108(25):3097-101. doi:10.1161/01.CIR.0000103123. 66264.FE.
26. Фальковская А. Ю., Мордовин В. Ф., Пекарский С. Е. и др. Динамика состояния углеводного обмена после ренальной денервации у больных резистентной артериальной гипертонией в сочетании с сахарным диабетом 2-го типа. Бюллетень сибирской медицины. 2015;14(5):82-90. doi:10.20538/1682-0363-2015-5-82-90.
27. Manukyan M, Falkovskaya A, Mordovin V, et al. Favorable effect of renal denervation on elevated renal vascular resistance in patients with resistant hypertension and type 2 diabetes mellitus. Front Cardiovas Med. 2022;9:1010546. doi:10.3389/ fcvm.2022.1010546.
28. Iijima R, Ndrepepa G, Mehilli J, et al. Impact of diabetes mellitus on long-term outcomes in the drug-eluting stent era. Am Heart J. 2007;154:688-93. doi:10.1016/j.ahj.2007.06.005.
29. Stettler C, Allemann S, Wandel S, et al. Drug eluting and bare metal stents in people with and without diabetes:collaborative network meta-analysis. BMJ. 2008;337:a1331. doi:10.1136/bmj.a1331.
30. Billinger M, Räber L, Hitz S, et al. Long-term clinical and angiographic outcomes of diabetic patients after revascularization with early generation drug-eluting stents. Am Heart J. 2012;163:87686. doi:10.1016/j.ahj.2012.02.014.
31. Kobayashi T, Sotomi Y, Suzuki S, et al. Five-year clinical efficacy and safety of contemporary thin-strut biodegradable polymer versus durable polymer drug-eluting stents: a systematic review and meta-analysis of 9 randomized controlled trials. Cardiovasc Interv Ther. 2020;35(3):250-8. doi:10.1007/s12928-019-00613-w.
32. Mone P, Gambardella J, Minicucci F, et al. Hyperglycemia drives stent restenosis in STEMI patients. Diabetes Care. 2021;44(11):e192-3. doi:10.2337/dc21-0939.
33. Zhao LP, Xu WT, Wang L, et al. Influence of insulin resistance on in-stent restenosis in patients undergoing coronary drugeluting stent implantation after long-term angiographic follow-up. Coron Artery Dis. 2015;26(1):5-10. doi:10.1097/ MCA.0000000000000170.
34. Hong SJ, Kim MH, Ahn TH, et al. Multiple predictors of coronary restenosis after drug-eluting stent implantation in patients with diabetes. Heart. 2006;92(8):1119-24. doi:10.1136/hrt.2005.075960.