1. Alalwan A.A., Voils S.A., Hartzema A.G. Trends in utilization of warfarin and direct oral anticoagulants in older adult patients with atrial fibrillation. Am J Health Syst Pharm. 2017;74(16):1237-44. DOI:10.2146/ajhp160756.
2. Loo S.Y., Dell'Aniello S., Huiart L., et al. Trends in the prescription of novel oral anticoagulants in UK primary care. Br J Clin Pharmacol. 2017;83(9):2096-106. DOI:10.1111/bcp.13299.
3. Ziakas P.D., Kourbeti I.S., Poulou L.S., et al. Medicare part D prescribing for direct oral anticoagulants in the United States: Cost, use and the "rubber effect". PLoS One. 2018;13(6):e0198674. DOI:10.1371/journal.pone.0198674.
4. Philippidis A. Top 15 Best-Selling Drugs of 2018: Sales for most treatments grow year-over-year despite concerns over rising prices. Genetic Engineering & Biotechnology News. 2019 39(4):16-7.
5. Alfirevic A., Downing J., Daras K., et al. Has the introduction of direct oral anticoagulants (DOACs) in England increased emergency admissions for bleeding conditions? A longitudinal ecological study. BMJ Open. 2020;10(5):e033357. DOI:10.1136/bmjopen-2019-033357.
6. Ragia G., Manolopoulos V.G. Pharmacogenomics of anticoagulation therapy: the last 10 years. Pharmacogenomics. 2019;20(16):1113-7. DOI:10.2217/pgs-2019-0149.
7. Kanuri S.H., Kreutz R.P. Pharmacogenomics of Novel Direct Oral Anticoagulants: Newly Identified Genes and Genetic Variants. J Pers Med. 2019;9(1):7. DOI:10.3390/jpm9010007.
8. Whirl-Carrillo M., McDonagh E.M., Hebert J.M., et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92(4):414-7. DOI:10.1038/clpt.2012.96.
9. Государственный реестр лекарственных средств [цитировано 20.07.2020. Доступно на: https://grls.rosminzdrav.ru/Default.aspx.
10. Gong I.Y., Kim R.B. Importance of pharmacokinetic profile and variability as determinants of dose and response to dabigatran, rivaroxaban, and apixaban. Can J Cardiol. 2013;29(7 Suppl):S24-S33. DOI:10.1016/j.cjca.2013.04.002.
11. Genome Aggregation Database. Available from: https://gnomad.broadinstitute.org.
12. Moner-Banet T., Alberio L., Bart P.A. Does One Dose Really Fit All? On the Monitoring of Direct Oral Anticoagulants: A Review of the Literature. Hamostaseologie. 2020;40(2):184-200. DOI:10.1055/a-1113-0655.
13. Shi J., Wang X., Nguyen J.H., et al. Dabigatran etexilate activation is affected by the CES1 genetic polymorphism G143E (rs71647871) and gender. Biochem Pharmacol. 2016;119:76-84. DOI:10.1016/j.bcp.2016.09.003.
14. Paré G., Eriksson N., Lehr T., et al. Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation. 2013;127(13):1404-12. DOI:10.1161/CIRCULATIONAHA.112.001233.
15. Dimatteo C., D'Andrea G., Vecchione G., et al. Pharmacogenetics of dabigatran etexilateinterindividual variability. Thromb Res. 2016;144:1-5. DOI:10.1016/j.thromres.2016.05.025.
16. Sychev D.A., Levanov A.N., Shelekhova T.V., et al. The impact of ABCB1 (rs1045642 and rs4148738) and CES1 (rs2244613) gene polymorphisms on dabigatran equilibrium peak concentration in patients after total knee arthroplasty. Pharmacogenomics Pers Med. 2018;11:127-37. DOI:10.2147/PGPM.S169277.
17. Gouin-Thibault I., Delavenne X., Blanchard A., et al. Interindividual variability in dabigatran and rivaroxaban exposure: contribution of ABCB1 genetic polymorphisms and interaction with clarithromycin. J Thromb Haemost. 2017;15(2):273-83. DOI:10.1111/jth.13577.
18. Sánchez Pascua T. Carboxylesterase 1 genetic variability, expression and potential for drug-drug interations. Diss. University of Liverpool, 2014. Available from: https://livrepository.liverpool.ac.uk/2006752/1/SanchezTer_Sep2014_2006752.pdf.
19. Lorenzini K.I, Daali Y., Fontana P., et al. Rivaroxaban-Induced Hemorrhage Associated with ABCB1 Genetic Defect. Front Pharmacol. 2016;7:494. DOI:10.3389/fphar.2016.00494.
20. Sennesael A.L., Larock A.S., Douxfils J., et al. Rivaroxaban plasma levels in patients admitted for bleeding events: insights from a prospective study. Thromb J. 2018;16:28. DOI:10.1186/s12959-018-0183-3.