1. Butler AM, Yin X, Evans DS, et al. Novel loci associated with PR interval in a genome-wide association study of 10 African American cohorts. Circ. Cardiovasc. Genet. 2012; 5(6): 639-46.
2. Cerbai E, Sartiani L. Holt-oram syndrome and atrial fibrillation: opening the (T)-box. Circ. Res. 2008; 102 (11): 1304-6.
3. Hiroi Y, Kudoh S, Monzen K, et al. Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nature Genet. 2001; 28: 276-80.
4. Holm H, Gudbjartsson DF, Arnar DO, et al. Several common variants modulate heart rate, PR interval and QRS duration. Nat. Genet. 2010; 42 (2): 117-122.
5. Liu C. X., Shen A. D., Li X. F. et al. Association of TBX5 gene polymorphism with ventricular septal defect in the Chinese Han population. Chin. Med. J. (Eng.l) 2009; 122(1): 30-34.
6. Patel C., Silcock L., McMullan D. et al. TBX5 intragenic duplication: a family with an atypical Holt-Oram syndrome phenotype. Eur. J. Hum. Genet. 2012; 20(8): 863-869.
7. Reamon-Buettner SM, Borlak J. TBX5 mutations in non-Holt-Oram syndrome (HOS) malformed hearts. Hum. Mutat. 2004; 24(1): 104.
8. Zang X, Zhang S, Xia Y, et al. SNP rs3825214 in TBX5 is associated with lone atrial fibrillation in Chinese Han population. PLoS One 2013; 8(5): e 64966.
9. Bogarapu S, Bleyl SB, Calhoun A, et al. Phenotype of a patient with contiguous deletion of TBX5 and TBX3: expanding the disease spectrum. Am. J. Med. Genet. A. 2014; 164A(5):1304-9.
10. Atik T, Dervisoglu H, Onay HJ, et al. A New Mutation in the TBX5 Gene in Holt-Oram Syndrome: Two Cases in the Same Family and Prenatal Diagnosis. Trop. Pediatr. 2014; 60(3):257-9.
11. Inagawa K, Miyamoto K, Yamakawa H. Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5. Circ Res. 2012; 111(9):1147-56.
12. Jensen B, Wang T, Christoffels VM, et al. Evolution and development of the building plan of the vertebrate heart. Biochim. Biophys. Acta. 2013; 1833(4):783-94.
13. Zhou L, Liu Y, Lu L, et al. Cardiac gene activation analysis in mammalian non-myoblasic cells by Nkx2-5, Tbx5, Gata4 and Myocd. PLoS One. 2012; 7(10):e48028.
14. Baban A, Pitto L, Pulignani S, et al. Holt-Oram syndrome with intermediate atrioventricular canal defect, and aortic coarctation: functional characterization of a de novo TBX5 mutation. Am. J. Med. Genet. 2014; 164A(6):1419-24.
15. Mathison M, Singh VP, Gersch RP, et al. “Triplet” polycistronic vectors encoding Gata4, Mef2c, and Tbx5 enhances postinfarct ventricular functional improvement compared with singlet vectors. J. Thorac Cardiovasc. Surg. 2014 ; S0022-5223(14): 00386-9.
16. Kobylińska J, Dworzański W, Cendrowska-Pinkosz M, et al. Morphological and molecular bases of cardiac development. Postepy Hig. Med. Dosw. (Online) 2013; 67:950-7.
17. van Duijvenboden K, Ruijter JM, Christoffels VM. Gene regulatory elements of the cardiac conduction system. Brief Funct Genomics. 2014; 13(1):28-38.
18. Ieda M. Heart regeneration using reprogramming technology. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2013; 89(3):118-28.
19. Hashem SI, Lam ML, Mihardja SS, et al. Shox2 regulates the pacemaker gene program in embryoid bodies. Stem. Cells. Dev. 2013; 22(21): 2915-26.
20. Misra C, Chang SW, Basu M, et al. Disruption of myocardial Gata4 and Tbx5 results in defects in cardiomyocyte proliferation and atrioventricular septation. Hum Mol Genet. 2014; ddu215.