Статья
Возможности компьютерной томографии в выявлении атеросклеротических бляшек высокого риска у больных с острым коронарным синдромом без подъема сегмента ST: сопоставление с внутрисосудистым ультразвуковым исследованием
Цель Оценка структурных характеристик атеросклеротических бляшек (АСБ) с помощью компьютерной томографии коронарных артерий (КТА) и внутрисосудистого ультразвукового исследования (ВСУЗИ).Материал и методы Исследование выполнено у 37 больных с острым коронарным синдромом (ОКС). КТА с использованием томографа с 64 рядами детекторов, коронарографию и ВСУЗИ в «серой шкале» и с функцией спектрального анализа проводили до стентирования коронарных артерий. Определяли протяженность АСБ, «бремя» бляшки, индекс ремоделирования (ИР), а также известные КТ-признаки (признаки по данным компьютерной томографии) нестабильности АСБ – наличие точечных кальцинатов, положительное ремоделирование артерии в месте АСБ, неровность контура бляшки, наличие кольцевидного усиления плотности по периферии АСБ и участка низкой рентгеновской плотности. По ВСУЗИ определяли тип АСБ и признаки разрыва или тромбоза.Результаты По данным ВСУЗИ выявлено 45 нестабильных АСБ (НАСБ): 25 – с разрывом, 20 – тонкокапсульных фиброатером (ТКФА) и 13 стабильных АСБ (САСБ). Не найдено статистически значимых различий в распределении ТКФА и АСБ с разрывом среди симптомсвязанных бляшек (ССБ, n=28) и симптомнесвязанных (СНБ, n=30). Они обнаружены соответственно в 82,1 и 73,3 % случаев (p>0,05), что указывает на генерализацию процесса дестабилизации АСБ в коронарном русле. Однако пристеночный тромбоз чаще определялся в ССБ – соответственно в 53,5 и 16,6 % АСБ (p<0,001). Не было различий между НАСБ и САСБ по частоте выявления качественных и значениям количественных КТ-характеристик АСБ, включая известные признаки нестабильности, за исключением наличия неровности контура, обнаруженной в 92,9 % НАСБ и в 46,1 % САСБ (p=0,0007) и участков с рентгеновской плотностью ≤46 HU, определенных в 83,3 % НАСБ и в 46,1 % САСБ (р=0,01). Наличие первого КТ-критерия в 11 раз повышает вероятность того, что АСБ является нестабильной (отношение шансов – ОШ 11,1 при 95 % доверительном интервале – ДИ от 2,24 до 55,33), второго – в 7 раз (ОШ 7,0 при 95 % ДИ от 5,63 до 8,37).Заключение Для НАСБ, выявленных по данным ВСУЗИ, наиболее характерны 2 рентгеновских признака – неровность контура и наличие участка рентгеновской плотности ≤46 HU. Наличие первого признака повышает вероятность нестабильности АСБ в 11 раз, второго – в 7 раз.
1. Falk E. Morphologic features of unstable atherothrombotic plaques underlying acute coronary syndromes. The American Journal of Cardiology. 1989;63(10):E114–20. DOI: 10.1016/0002-9149(89)90242-7
2. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the Vulnerable Plaque. Journal of the American College of Cardiology. 2006;47(8):C13–8. DOI: 10.1016/j.jacc.2005.10.065
3. Fuster V, Badimon JJ, Chesebro JH. Atherothrombosis: mechanisms and clinical therapeutic approaches. Vascular Medicine. 1998;3(3):231–9. DOI: 10.1177/1358836X9800300310
4. Farb A, Tang AL, Burke AP, Sessums L, Liang Y, Virmani R. Sudden Coronary Death: Frequency of Active Coronary Lesions, Inactive Coronary Lesions, and Myocardial Infarction. Circulation. 1995;92(7):1701–9. DOI: 10.1161/01.CIR.92.7.1701
5. Kolodgie FD, Burke AP, Farb A, Gold HK, Yuan J, Narula J et al. The thin-cap fibroatheroma: a type of vulnerable plaque: The major precursor lesion to acute coronary syndromes: Current Opinion in Cardiology. 2001;16(5):285–92. DOI: 10.1097/00001573-200109000-00006
6. Celeng C, Takx RAP, Ferencik M, Maurovich-Horvat P. Non-invasive and invasive imaging of vulnerable coronary plaque. Trends in Cardiovascular Medicine. 2016;26(6):538–47. DOI: 10.1016/j.tcm.2016.03.005
7. Шабанова М.С. Сопоставление результатов измерения степени стенозирования просвета коронарных артерий при компьютерной томографии, внутрисосудистом ультразвуковом исследовании и коронарной ангиографии. Российский электронный журнал лучевой диагностики. 2016;6(3):38-47. DOI: 10.21569/2222-7415-2016-6-3-38-47
8. Веселова Т.Н., Шабанова М.С., Миронов В.М., Меркулова И.Н., Терновой С.К. Компьютерная томоангиография коронарных артерий при сопоставлении с внутрисосудистым ультразвуковым исследованием. Кардиология. 2017;57(1):42-7
9. Шария М.А., Шабанова М.С., Веселова Т.Н., Меркулова И.Н., Миронов В.М., Гаман С.А. и др. Сопоставление результатов компьютерной ангиографии и внутрисосудистого ультразвукового исследования в оценке параметров атеросклеротических бляшек. Медицинская визуализация. 2018;22(4):7-19. DOI: 10.24835/1607-0763-2018-4-7-19
10. Abdulla J, Asferg C, Kofoed KF. Prognostic value of absence or presence of coronary artery disease determined by 64-slice computed tomography coronary angiography A systematic review and meta-analysis. The International Journal of Cardiovascular Imaging. 2011;27(3):413–20. DOI: 10.1007/s10554-010-9652-x
11. Тагиева Н.Р., Шахнович Р.М., Миронов В.М., Ежов М.В., Матчин Ю.Г., Митрошкин М.Г. и др. Cравнение атеросклеротических поражений коронарных артерий у больных острым инфарктом миокарда и стабильной стенокардией по данным внутрисосудистого ультразвукового исследования. Кардиология. 2015;55(7):5-13
12. Yamaki T, Kawasaki M, Jang I-K, Raffel OC, Ishihara Y, Okubo M et al. Comparison between integrated backscatter intravascular ultrasound and 64-slice multi-detector row computed tomography for tissue characterization and volumetric assessment of coronary plaques. Cardiovascular Ultrasound. 2012;10(1):33. DOI: 10.1186/1476-7120-10-33
13. Obaid DR, Calvert PA, Brown A, Gopalan D, West NEJ, Rudd JHF et al. Coronary CT angiography features of ruptured and high-risk atherosclerotic plaques: Correlation with intra-vascular ultrasound. Journal of Cardiovascular Computed Tomography. 2017;11(6):455–61. DOI: 10.1016/j.jcct.2017.09.001
14. Marwan M, Taher MA, El Meniawy K, Awadallah H, Pflederer T, Schuhbäck A et al. In vivo CT detection of lipid-rich coronary artery atherosclerotic plaques using quantitative histogram analysis: A head to head comparison with IVUS. Atherosclerosis. 2011;215(1):110–5. DOI: 10.1016/j.atherosclerosis.2010.12.006
15. Pohle K, Achenbach S, MacNeill B, Ropers D, Ferencik M, Moselewski F et al. Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: Comparison to IVUS. Atherosclerosis. 2007;190(1):174–80. DOI: 10.1016/j.atherosclerosis.2006.01.013
16. Voros S, Rinehart S, Qian Z, Vazquez G, Anderson H, Murrieta L et al. Prospective Validation of Standardized, 3-Dimensional, Quantitative Coronary Computed Tomographic Plaque Measurements Using Radiofrequency Backscatter Intravascular Ultrasound as Reference Standard in Intermediate Coronary Arterial Lesions. JACC: Cardiovascular Interventions. 2011;4(2):198–208. DOI: 10.1016/j.jcin.2010.10.008
17. Kitagawa T, Yamamoto H, Horiguchi J, Ohhashi N, Tadehara F, Shokawa T et al. Characterization of Noncalcified Coronary Plaques and Identification of Culprit Lesions in Patients With Acute Coronary Syndrome by 64-Slice Computed Tomography. JACC: Cardiovascular Imaging. 2009;2(2):153–60. DOI: 10.1016/j.jcmg.2008.09.015
18. Hoffmann U, Moselewski F, Nieman K, Jang I-K, Ferencik M, Rahman AM et al. Noninvasive Assessment of Plaque Morphology and Composition in Culprit and Stable Lesions in Acute Coronary Syndrome and Stable Lesions in Stable Angina by Multidetector Computed Tomography. Journal of the American College of Cardiology. 2006;47(8):1655–62. DOI: 10.1016/j.jacc.2006.01.041
19. Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T et al. Multislice Computed Tomographic Characteristics of Coronary Lesions in Acute Coronary Syndromes. Journal of the American College of Cardiology. 2007;50(4):319–26. DOI: 10.1016/j.jacc.2007.03.044
20. Pflederer T, Marwan M, Schepis T, Ropers D, Seltmann M, Muschiol G et al. Characterization of culprit lesions in acute coronary syndromes using coronary dual-source CT angiography. Atherosclerosis. 2010;211(2):437–44. DOI: 10.1016/j.atherosclerosis.2010.02.001
21. Puchner SB, Liu T, Mayrhofer T, Truong QA, Lee H, Fleg JL et al. High-Risk Plaque Detected on Coronary CT Angiography Predicts Acute Coronary Syndromes Independent of Significant Stenosis in Acute Chest Pain: results from the ROMICAT-II trial. Journal of the American College of Cardiology. 2014;64(7):684–92. DOI: 10.1016/j.jacc.2014.05.039
22. Maurovich-Horvat P, Ferencik M, Voros S, Merkely B, Hoffmann U. Comprehensive plaque assessment by coronary CT angiography. Nature Reviews Cardiology. 2014;11(7):390–402. DOI: 10.1038/nrcardio.2014.60
23. Otsuka K, Fukuda S, Tanaka A, Nakanishi K, Taguchi H, Yoshikawa J et al. Napkin-Ring Sign on Coronary CT Angiography for the Prediction of Acute Coronary Syndrome. JACC: Cardiovascular Imaging. 2013;6(4):448–57. DOI: 10.1016/j.jcmg.2012.09.016
24. Ferencik M, Schlett CL, Ghoshhajra BB, Kriegel MF, Joshi SB, Maurovich-Horvat P et al. A Computed Tomography-Based Coronary Lesion Score to Predict Acute Coronary Syndrome Among Patients With Acute Chest Pain and Significant Coronary Stenosis on Coronary Computed Tomographic Angiogram. The American Journal of Cardiology. 2012;110(2):183–9. DOI: 10.1016/j.amjcard.2012.02.066
25. Веселова Т.Н., Меркулова И.Н., Барышева Н.А., Терновой С.К., Шария М.А., Руда М.Я. Сравнение особенностей атеросклеротических бляшек в коронарных артериях у больных острым коронарным синдромом и стабильной формой ишемической болезни сердца по данным мультиспиральной компьютерной томографии. Кардиология. 2013;53(12):14-20
26. Kashiwagi M, Tanaka A, Shimada K, Kitabata H, Komukai K, Nishiguchi T et al. Distribution, frequency and clinical implications of napkin-ring sign assessed by multidetector computed tomography. Journal of Cardiology. 2013;61(6):399–403. DOI: 10.1016/j.jjcc.2013.01.004
27. Kröner ESJ, van Velzen JE, Boogers MJ, Siebelink H-MJ, Schalij MJ, Kroft LJ et al. Positive Remodeling on Coronary Computed Tomography as a Marker for Plaque Vulnerability on Virtual Histology Intravascular Ultrasound. The American Journal of Cardiology. 2011;107(12):1725–9. DOI: 10.1016/j.amjcard.2011.02.337
28. Benedek T, Jako B, Benedek I. Plaque Quantification by Coronary CT and Intravascular Ultrasound Identifies a Low CT Density Core as a Marker of Plaque Instability in Acute Coronary Syndromes. International Heart Journal. 2014;55(1):22–8. DOI: 10.1536/ihj.13-213
29. Ozaki Y, Okumura M, Ismail TF, Motoyama S, Naruse H, Hattori K et al. Coronary CT angiographic characteristics of culprit lesions in acute coronary syndromes not related to plaque rupture as defined by optical coherence tomography and angioscopy. European Heart Journal. 2011;32(22):2814–23. DOI: 10.1093/eurheartj/ehr189
30. Nakazato R, Otake H, Konishi A, Iwasaki M, Koo B-K, Fukuya H et al. Atherosclerotic plaque characterization by CT angiography for identification of high-risk coronary artery lesions: a comparison to optical coherence tomography. European Heart Journal - Cardiovascular Imaging. 2015;16(4):373–9. DOI: 10.1093/ehjci/jeu188
31. Bittner DO, Mayrhofer T, Puchner SB, Lu MT, Maurovich-Horvat P, Ghemigian K et al. Coronary Computed Tomography AngiographySpecific Definitions of High-Risk Plaque Features Improve Detection of Acute Coronary Syndrome. Circulation. Cardiovascular Imaging. 2018;11(8):e007657. DOI: 10.1161/CIRCIMAGING.118.007657
32. Kashiwagi M, Tanaka A, Kitabata H, Tsujioka H, Kataiwa H, Komukai K et al. Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC. Cardiovascular imaging. 2009;2(12):1412–9. DOI: 10.1016/j.jcmg.2009.09.012
33. Yuan M, Wu H, Li R, Yu M, Dai X, Zhang J. The value of quantified plaque analysis by dual-source coronary CT angiography to detect vulnerable plaques: a comparison study with intravascular ultrasound. Quantitative Imaging in Medicine and Surgery. 2020;10(3):668–77. DOI: 10.21037/qims.2020.01.13
34. Maehara A, Cristea E, Mintz GS, Lansky AJ, Dressler O, Biro S et al. Definitions and Methodology for the Grayscale and Radiofrequency Intravascular Ultrasound and Coronary Angiographic Analyses. JACC: Cardiovascular Imaging. 2012;5(3):S1–9. DOI: 10.1016/j.jcmg.2011.11.019
35. Roffi M, Patrono C, Collet J-P, Mueller C, Valgimigli M, Andreotti F et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). European Heart Journal. 2016;37(3):267–315. DOI: 10.1093/eurheartj/ehv320
36. van Velzen JE, Schuijf JD, de Graaf FR, Nucifora G, Pundziute G, Jukema JW et al. Plaque type and composition as evaluated non-invasively by MSCT angiography and invasively by VH IVUS in relation to the degree of stenosis. Heart. 2009;95(24):1990–6. DOI: 10.1136/hrt.2009.176933
37. Otsuka F, Yasuda S, Noguchi T, Ishibashi-Ueda H. Pathology of coronary atherosclerosis and thrombosis. Cardiovascular Diagnosis and Therapy. 2016;6(4):396–408. DOI: 10.21037/cdt.2016.06.01
38. Tanaka A, Shimada K, Sano T, Namba M, Sakamoto T, Nishida Y et al. Multiple Plaque Rupture and C-Reactive Protein in Acute Myocardial Infarction. Journal of the American College of Cardiology. 2005;45(10):1594–9. DOI: 10.1016/j.jacc.2005.01.053
39. Vergallo R, Ren X, Yonetsu T, Kato K, Uemura S, Yu B et al. Pancoronary plaque vulnerability in patients with acute coronary syndrome and ruptured culprit plaque: A 3-vessel optical coherence tomography study. American Heart Journal. 2014;167(1):59–67. DOI: 10.1016/j.ahj.2013.10.011
40. Mauriello A, Sangiorgi G, Fratoni S, Palmieri G, Bonanno E, Anemona L et al. Diffuse and Active Inflammation Occurs in Both Vulnerable and Stable Plaques of the Entire Coronary Tree: a histopathologic study of patients dying of acute myocardial infarction. Journal of the American College of Cardiology. 2005;45(10):1585–93. DOI: 10.1016/j.jacc.2005.01.054
41. Asakura M, Ueda Y, Yamaguchi O, Adachi T, Hirayama A, Hori M et al. Extensive development of vulnerable plaques as a pan-coronary process in patients with myocardial infarction: an angioscopic study. Journal of the American College of Cardiology. 2001;37(5):1284–8. DOI: 10.1016/S0735-1097(01)01135-4
42. Achenbach S, Marwan M. Intracoronary Thrombus. Journal of Cardiovascular Computed Tomography. 2009;3(5):344–5. DOI: 10.1016/j.jcct.2009.06.009
43. Maurovich-Horvat P, Schlett CL, Alkadhi H, Nakano M, Stolzmann P, Vorpahl M et al. Differentiation of Early from Advanced Coronary Atherosclerotic Lesions: Systematic Comparison of CT, Intravascular US, and Optical Frequency Domain Imaging with Histopathologic Examination in ex Vivo Human Hearts. Radiology. 2012;265(2):393– 401. DOI: 10.1148/radiol.12111891
44. Cheruvu PK, Finn AV, Gardner C, Caplan J, Goldstein J, Stone GW et al. Frequency and Distribution of Thin-Cap Fibroatheroma and Ruptured Plaques in Human Coronary Arteries. Journal of the American College of Cardiology. 2007;50(10):940–9. DOI: 10.1016/j.jacc.2007.04.086
45. Tavora F, Cresswell N, Li L, Fowler D, Burke A. Frequency of acute plaque ruptures and thin cap atheromas at sites of maximal stenosis. Arquivos Brasileiros De Cardiologia. 2010;94(2):153–9. DOI: 10.1590/s0066-782x2010000200003
46. Pundziute G, Schuijf JD, Jukema JW, Decramer I, Sarno G, Vanhoenacker PK et al. Evaluation of plaque characteristics in acute coronary syndromes: non-invasive assessment with multi-slice computed tomography and invasive evaluation with intravascular ultrasound radiofrequency data analysis. European Heart Journal. 2008;29(19):2373– 81. DOI: 10.1093/eurheartj/ehn356
47. Liu J, Wang Z, Wang W, Li Q, Ma Y, Liu C et al. Feasibility of diagnosing unstable plaque in patients with acute coronary syndrome using iMap-IVUS. Journal of Zhejiang University. Science. B. 2015;16(11):924–30. DOI: 10.1631/jzus.B1500206
48. Wieringa WG, Lexis CPH, Lipsic E, van der Werf HW, Burgerhof JGM, Hagens VE et al. In vivo coronary lesion differentiation with computed tomography angiography and intravascular ultrasound as compared to optical coherence tomography. Journal of Cardiovascular Computed Tomography. 2017;11(2):111–8. DOI: 10.1016/j.jcct.2017.01.004
49. Matsumoto H, Watanabe S, Kyo E, Tsuji T, Ando Y, Otaki Y et al. Standardized volumetric plaque quantification and characterization from coronary CT angiography: a head-to-head comparison with invasive intravascular ultrasound. European Radiology. 2019;29(11):6129–39. DOI: 10.1007/s00330-019-06219-3
50. Conte E, Mushtaq S, Pontone G, Li Piani L, Ravagnani P, Galli S et al. Plaque quantification by coronary computed tomography angiography using intravascular ultrasound as a reference standard: a comparison between standard and last generation computed tomography scanners. European Heart Journal - Cardiovascular Imaging. 2019;21(2):191–201. DOI: 10.1093/ehjci/jez089
51. Park H-B, Lee BK, Shin S, Heo R, Arsanjani R, Kitslaar PH et al. Clinical Feasibility of 3D Automated Coronary Atherosclerotic Plaque Quantification Algorithm on Coronary Computed Tomography Angiography: Comparison with Intravascular Ultrasound. European Radiology. 2015;25(10):3073–83. DOI: 10.1007/s00330-015-3698-z
52. Kigka VI, Sakellarios A, Kyriakidis S, Rigas G, Athanasiou L, Siogkas P et al. A three-dimensional quantification of calcified and non-calcified plaques in coronary arteries based on computed tomography coronary angiography images: Comparison with expert’s annotations and virtual histology intravascular ultrasound. Computers in Biology and Medicine. 2019;113:103409. DOI: 10.1016/j.compbiomed.2019.103409
53. Kolossváry M, Park J, Bang J-I, Zhang J, Lee JM, Paeng JC et al. Identification of invasive and radionuclide imaging markers of coronary plaque vulnerability using radiomic analysis of coronary computed tomography angiography. European Heart Journal - Cardiovascular Imaging. 2019;20(11):1250–8. DOI: 10.1093/ehjci/jez033
54. Masuda T, Nakaura T, Funama Y, Okimoto T, Sato T, Higaki T et al. Machine-learning integration of CT histogram analysis to evaluate the composition of atherosclerotic plaques: Validation with IB-IVUS. Journal of Cardiovascular Computed Tomography. 2019;13(2):163– 9. DOI: 10.1016/j.jcct.2018.10.018
55. Heo R, Park H-B, Lee BK, Shin S, Arsanjani R, Min JK et al. Optimal boundary detection method and window settings for coronary atherosclerotic plaque volume analysis in coronary computed tomography angiography: comparison with intravascular ultrasound. European Radiology. 2016;26(9):3190–8. DOI: 10.1007/s00330-015-4121-5
56. Murata N, Hiro T, Takayama T, Migita S, Morikawa T, Tamaki T et al. High shear stress on the coronary arterial wall is related to computed tomography-derived high-risk plaque: a three-dimensional computed tomography and color-coded tissue-characterizing intravascular ultrasonography study. Heart and Vessels. 2019;34(9):1429–39. DOI: 10.1007/s00380-019-01389-y
57. Ito T, Terashima M, Kaneda H, Nasu K, Matsuo H, Ehara M et al. Comparison of In Vivo Assessment of Vulnerable Plaque by 64-Slice Multislice Computed Tomography Versus Optical Coherence Tomography. The American Journal of Cardiology. 2011;107(9):1270–7. DOI: 10.1016/j.amjcard.2010.12.036
58. Tanaka A, Shimada K, Yoshida K, Jissyo S, Tanaka H, Sakamoto M et al. Non-Invasive Assessment of Plaque Rupture by 64-Slice Multidetector Computed Tomography - Comparison With Intravascular Ultrasound. Circulation Journal. 2008;72(8):1276–81. DOI: 10.1253/circj.72.1276