Белик Екатерина Владимировна, Дылева Юлия Александровна, Учасова Евгения Генадьевна, Понасенко Анастасия Валериевна, Халивопуло Иван Константинович, Горбатовская Евгения Евгеньевна, Долматова Софья Евгеньевна, Груздева Ольга Викторовна Влияние возраста на экспрессию церамид-метаболизирующих ферментов в жировой ткани пациентов с ишемической болезнью сердца. Кардиоваскулярная терапия и профилактика. 2025;24(1)
1. Ou MY, Zhang H, Tan PC, et al. Adipose tissue aging: mechanisms and therapeutic implications. Cell Death Dis. 2022;13(4):300. doi: 10.1038/s41419-022-04752-6.
2. Cho YK, Lee S, Lee J, et al. Lipid remodeling of adipose tissue in metabolic health and disease. Exp Mol Med. 2023;55(9):1955-1973. doi: 10.1038/s12276-023-01071-4.
3. Poss AM, Summers SA. Too much of a good thing? An evolutionary theory to explain the role of ceramides in nafld. Front. Endocrinol. 2020;11:505. doi: 10.3389/fendo.2020.00505.
4. Li S, Kim HE. Implications of Sphingolipids on Aging and Age-Related Diseases. Front Aging. 2022;3;2:797320. doi: 10.3389/fragi.2021.797320.
5. Brel NK, Gruzdeva OV, Kokov AN, et al. Interrelation of calcification of coronary arteries and local fat depots in patients with coronary artery disease. Complex problems of cardiovascular diseases 2022; 11(3): 51-63. (In Russ.) Брель Н.К., Груздева О. В., Коков А.Н. и др. Взаимосвязь кальциноза коронарных артерий и локальных жировых депо у пациентов с ишемической болезнью сердца. Комплексные проблемы сердечно-сосудистых заболеваний. 2022;11(3):51-63.doi :10.17802/2306–1278-2022-11-3-51–63.
6. Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat Rev Cardiol. 2022;19(9):593-606. doi: 10.1038/s41569-022-00679-9.
7. Gruzdeva OV, Belik EV, Dyleva YuA, Uchasova EG, Ponasenko AV, Kutikhin AG, Markova VE, Gorbatovskaya EE, Fanaskova EV, Ivanov SV, Stasev AN, Zinets MG, Slesareva TA, Barbarash OL. Gene expression of ceramide metabolism enzymes in fat depots of different localization in cardiovascular diseases. Russian Journal of Cardiology. 2023;28(4):5390. (In Russ.) Груздева ОВ, Белик ЕВ, Дылева ЮА. и др. Особенности экспрессии генов ферментов метаболизма церамидов в жировых депо различной локализации при сердечно-сосудистых заболеваниях. Российский кардиологический журнал. 2023;28(4):23-31. doi:10.15829/1560-4071-2023-5390
8. Chaurasia B, Tippetts TS, Monibas RM, et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science. 2019;365:386–92. doi: 10.1126/science.aav3722.
9. Gruzdeva OV, Dyleva YuA, Belik EV, et al. Comparative evaluation of the expression of enzymes of the ceramide de novo synthesis pathway in cardiac adipose tissue and blood vessels of cardiovascular patients. Russian Journal of Cardiology. 2022;27(12):5281. (In Russ.) Груздева О.В., Дылева Ю.А., Белик Е.В. и др. Сравнительная оценка экспрессии ферментов пути синтеза церамидов de novo в жировой ткани сердца и сосудов пациентов с сердечно-сосудистыми заболеваниями. Российский кардиологический журнал. 2022;27(12):5281. doi: 10.15829/1560–4071-2022-5281.
10. Hadas Y, Vincek AS, Youssef E, et al. Altering Sphingolipid Metabolism Attenuates Cell Death and Inflammatory Response After Myocardial Infarction. Circulation. 2020;141:916-930. doi: 10.1161/CIRCULATIONAHA.119.041882.
11. Yu Z, Peng Q, Huang Y. Potential therapeutic targets for atherosclerosis in sphingolipid metabolism. Clin Sci (Lond). 2019;133(6):763-776. doi: 10.1042/CS20180911.
12. Carrard J, Gallart-Ayala H, Weber N, Colledge F, Streese L, Hanssen H, et al. How Ceramides Orchestrate Cardiometabolic Health-An Ode to Physically Active Living. Metabolites. 2021;11(10):675. doi:10.3390/metabo11100675.
13. Kim KI. Risk Stratification of Cardiovascular Disease according to Age Groups in New Prevention Guidelines: A Review. J Lipid Atheroscler. 2023;12(2):96-105. doi: 10.12997/jla.2023.12.2.96.
14. Gruzdeva O, Dyleva Y, Belik E, et al. Expression of Ceramide-Metabolizing Enzymes in the Heart Adipose Tissue of Cardiovascular Disease Patients. Int. J. Mol. Sci. 2023;30;24(11):94942023, 24(11):9494.
15. Rodgers JL, Jones J, Bolleddu SI, et al. Cardiovascular Risks Associated with Gender and Aging. J Cardiovasc Dev Dis. 2019;27;6(2):19. doi: 10.3390/jcdd6020019.
16. Pagan LU, Gomes MJ, Gatto M, et al. The Role of Oxidative Stress in the Aging Heart. Antioxidants (Basel). 2022;9;11(2):336. doi: 10.3390/antiox11020336.
17. Rodríguez-Calvo R, Serrano L, Barroso E, et al. Peroxisome proliferator-activated receptor alpha down-regulation is associated with enhanced ceramide levels in age-associated cardiac hypertrophy. J Gerontol A Biol Sci Med Sci. 2007;62(12):1326-36. doi: 10.1093/gerona/62.12.1326.
18. Hilvo M, Meikle PJ, Pedersen ER, et al. Development and validation of a ceramide and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients. Eur. Heart J. 2019; 41:371–380. doi:10.1093/eurheartj/ehz387.
19. Li Y, Talbot CL, Chaurasia B. Ceramides in Adipose Tissue. Front. Endocrinol. 2020;11:407. doi:10.3389/fendo.2020.00407.
20. Stiban J, Tidhar R, Futerman AH. Ceramide synthases: roles in cell physiology and signaling // Adv. Exp. Med. Biol. 2010;688:60-71. doi:10.1007/978-1-4419-6741-1_4.
21. Ho QWC, Zheng X, Ali Y. Ceramide Acyl Chain Length and Its Relevance to Intracellular Lipid Regulation. Int. J. Mol. Sci. 2022;26; 23(17):9697. doi: 10.3390/ijms23179697.
22. Tidhar R, Zelnik ID, Volpert G, et al. Eleven residues determine the acyl chain specificity of ceramide synthases. J. Biol. Chem. 2018;287:3197-3206. doi: 10.1074/jbc.RA118.001936.
23. Kim GT, Devi S, Sharma A, et al. Upregulation of the serine palmitoyltransferase subunit SPTLC2 by endoplasmic reticulum stress inhibits the hepatic insulin response. Exp Mol Med. 2022;54(5):573-584. doi: 10.1038/s12276-022-00766-4.
24. Błachnio-Zabielska AU, Baranowski M, Hirnle T, et al. Increased bioactive lipids content in human subcutaneous and epicardial fat tissue correlates with insulin resistance. Lipids. 2012;47:1131–1141. doi: 10.1007/s11745-012-3722-x.
25. Mahabadi AA, Berg MH, Lehmann N, et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: The Heinz Nixdorf Recall Study. J. Am. Coll. Cardiol. 2013;61:1388-1395. doi: 10.1016/j.jacc.2012.11.062.
26. Hammerschmidt P, Brüning JC. Contribution of specific ceramides to obesity-associated metabolic diseases. Cell. Mol. Life Sci. 2022;79:395. doi: 10.1007/s00018-022-04401-3.
27. Gill JM, Sattar N. Ceramides a new player in the inflammation-insulin resistance paradigm? Diabetologia. 2009;52:2475–2477. doi: 10.1007/s00125-009-1546-x.
28. Parveen F, Bender D, Law SH, et al. Role of Ceramidases in Sphingolipid Metabolism and Human Diseases. Cells. 2019;8(12):1573. doi: 10.3390/cells8121573.
29. Gault CR, Obeid LM, Hannun YA. An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol. 2010;688:1-23. doi: 10.1007/978-1-4419-6741-1_1.
30. Choi RH, Tatum SM, Symons JD, et al. Ceramides and other sphingolipids as drivers of cardiovascular disease. Nat Rev Cardiol. 2021;18(10):701-711. doi: 10.1038/s41569-021-00536-1.
31. Zietzer A, Düsing P, Reese L, et al. Ceramide Metabolism in Cardiovascular Disease: A Network With High Therapeutic Potential. Arterioscler Thromb Vasc Biol. 2022;42(10):1220-1228. doi: 10.1161/ATVBAHA.122.318048.
32. Monette JS, Gómez LA, Moreau RF, et al. (R)-α-Lipoic acid treatment restores ceramide balance in aging rat cardiac mitochondria. Pharmacol Res. 2011;63(1):23-9. doi: 10.1016/j.phrs.2010.09.007.
33. Li Z, Chiang YP, He M, et al. Effect of liver total sphingomyelin synthase deficiency on plasma lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(5):158898. doi: 10.1016/j.bbalip.2021.158898.