1. Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat Rev Cardiol. 2022;19(9):593-606. doi:10.1038/s41569-022-00679-9.
2. Брель Н. К., Груздева О. В., Коков А. Н. и др. Взаимосвязь кальциноза коронарных артерий и локальных жировых депо у пациентов с ишемической болезнью сердца. Комплексные проблемы сердечно-сосудистых заболеваний. 2022;11(3):51-63. doi:10.17802/2306-1278-2022-11-3-51-6.
3. Gruzdeva OV, Dyleva YA, Belik EV, et al. Relationship between Epicardial and Coronary Adipose Tissue and the Expression of Adiponectin, Leptin, and Interleukin 6 in Patients with Coronary Artery Disease. J Pers Med. 2022;12(2):129. doi:10.3390/jpm12020129.
4. Chatham JC, Young ME. Metabolic remodeling in the hypertrophic heart: fuel for thought. Circ. Res. 2012;111:666-8. doi:10.1161/circresaha.112.277392.
5. Summers SA, Chaurasia B, Holland WL. Metabolic Messengers: Ceramides. Nat. Metab. 2019;1(11):1051-8. doi:10.1038/s42255-019-0134-8.
6. Mielke MM, Bandaru VV, Han D, et al. Factors affecting longitudinal trajectories of plasma sphingomyelins: the Baltimore Longitudinal Study of Aging. Aging Cell. 2015;14(1):112-21. doi:10.1111/acel.12275.
7. Middlekauff HR, William KJ, Su B, et al. Changes in lipid composition associated with electronic cigarette use. J Transl Med. 2020;18:379. doi:10.1186/s12967-020-02557-9.
8. Turpin SM, Nicholls HT, Willmes DM, et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 2014;20(4):678-86. doi:10.1016/j.cmet.2014.08.002.
9. Chathoth S, Ismail MH, Alghamdi HM, et al. Insulin resistance induced by de novo pathway-generated C16-ceramide is associated with type 2 diabetes in an obese population. Lipids Health Dis. 2022;21:24. doi:10.1186/s12944-022-01634-w.
10. Park TS, Rosebury W, Kindt EK, et al. Serine palmitoyltransferase inhibitor myriocin induces the regression of atherosclerotic plaques in hyperlipidemic ApoE-deficient mice. Pharmacol Res. 2008;58(1):45-51. doi:10.1016/j.phrs.2008.06.005.
11. McGurk KA, Keavney BD, Nicolaou A, et al. Circulating ceramides as biomarkers of cardiovascular disease: Evidence from phenotypic and genomic studies. Atherosclerosis. 2021;327:18-30. doi:10.1016/j.atherosclerosis.2021.04.021.
12. Mantovani A, Bonapace S, Lunardi G, et al. Associations between specific plasma ceramides and severity of coronary-artery stenosis assessed by coronary angiography. Diabetes Metab. 2020;46(2):150-7. doi:10.1016/j.diabet.2019.07.006.
13. Li Y, Talbot CL, Chaurasia B. Ceramides in Adipose Tissue. Front. Endocrinol. 2020;11:407. doi:10.3389/fendo.2020.00407.
14. Tidhar R, Zelnik ID, Volpert G, et al. Eleven residues determine the acyl chain specificity of ceramide synthases. J. Biol. Chem. 2018;287:3197-206. doi:10.1074/jbc.RA118.001936.
15. Shah C, Yang G, Lee I, et al. Protection from high fat diet-induced increase in ceramide in mice lacking plasminogen activator inhibitor 1. J Biol Chem. 2008;283(20):13538-48. doi:10.1074/jbc.M709950200.
16. Chaurasia B, Kaddai VA, Lancaster GI, et al. Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism. Cell Metab. 2016;24(6): 820-34. doi:10.1016/j.cmet.2016.10.002.
17. Choi RH, Tatum SM, Symons JD, et al. Ceramides and other sphingolipids as drivers of cardiovascular disease. Nat Rev Cardiol. 2021;18(10):701-11. doi:10.1038/s41569-021-00536-1.
18. Błachnio-Zabielska AU, Baranowski M, Hirnle T, et al. Increased bioactive lipids content in human subcutaneous and epicardial fat tissue correlates with insulin resistance. Lipids. 2012;47(12):1131-41. doi:10.1007/s11745-012-3722-x.
19. Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav. 2008;94:206-18. doi:10.1016/j.physbeh.2007.10.010.
20. Ginkel C, Hartmann D, vom Dorp K, et al. Ablation of neuronal ceramide synthase 1 in mice decreases ganglioside levels and expression of myelin-associated glycoprotein in oligodendrocytes. J Biol Chem. 2012;287(50):41888-902. doi:10.1074/jbc.M112.413500.
21. Kim YR, Lee EJ, Shin KO, et al. Hepatic triglyceride accumulation via endoplasmic reticulum stress-induced SREBP-1 activation is regulated by ceramide synthases. Exp Mol Med. 2019;51(11):1-16. doi:10.1038/s12276-019-0340-1.
22. Goldenberg JR, Carley AN, Ji R, et al. Preservation of Acyl Coenzyme A Attenuates Pathological and Metabolic Cardiac Remodeling Through Selective Lipid Trafficking. Circulation. 2019;139(24):2765-77. doi:10.1161/CIRCULATIONAHA.119.039610.
23. Laviad EL, Albee L, Pankova-Kholmyansky I, et al. Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J biol chem. 2008;283:5677-84. doi:10.1074/jbc.M707386200.
24. Atilla-Gokcumen GE, Muro E, Relat-Goberna J, et al. Dividing cells regulate their lipid composition and localization. Cell. 2014;156(3):428-39. doi:10.1016/j.cell.2013.12.015.
25. Law BA, Liao X, Moore KS, et al. Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes. FASEB J. 2018;32(3):1403-16. doi:10.1096/fj.201700300R.
26. Gosejacob D, Jäger PS, Vom Dorp K, et al. Ceramide Synthase 5 Is Essential to Maintain C16:0-Ceramide Pools and Contributes to the Development of Diet-induced Obesity. The Journal of biological chemistry. 2016;291(13):6989-7003. doi:10.1074/jbc.M115.691212.
27. Kolak M, Gertow J, Westerbacka J, et al. Expression of ceramide-metabolising enzymes in subcutaneous and intra-abdominal human adipose tissue. Lipids Health Dis. 2012;11: 115. doi:10.1186/1476-511X-11-115.
28. Devlin CM, Lahm T, Hubbard WC, et al. Dihydroceramide-based response to hypoxia. J Biol Chem. 2011;286(44):38069-78. doi:10.1074/jbc.M111.297994.