1. Брель Н. К., Груздева О. В., Коков А. Н. и др. Взаимосвязь кальциноза коронарных артерий и локальных жировых депо у пациентов с ишемической болезнью сердца. Комплексные проблемы сердечно-сосудистых заболеваний. 2022;11(3):51-63. doi:10.17802/2306-1278-2022-11-3-51-6.
2. Zietzer A, Düsing P, Reese L, et al. Ceramide Metabolism in Cardiovascular Disease: A Network With High Therapeutic Potential. Arterioscler Thromb Vasc Biol. 2022;42(10). doi:10.1161/ATVBAHA.122.318048.
3. Pavoine C, Pecker F. Sphingomyelinases: their regulation and roles in cardiovascular pathophysiology. Cardiovasc Res. 2009;82(2):175-83. doi:10.1093/cvr/cvp030.
4. Shu H, Peng Y, Hang W, et al. Emerging Roles of Ceramide in Cardiovascular Diseases. Aging Dis. 2022;13(1):232-45. doi:10.14336/AD.2021.0710.
5. Груздева О. В., Дылева Ю. А., Белик Е. В. и др. Сравнительная оценка экспрессии ферментов пути синтеза церамидов de novo в жировой ткани сердца и сосудов пациентов с сердечно-сосудистыми заболеваниями. Российский кардиологический журнал. 2022;27(12):5281. doi:10.15829/1560-4071-2022-5281.
6. Tippetts TS, Holland WL, Summers SA. Cholesterol — the devil you know; ceramide — the devil you don’t. Trends Pharmacol Sci. 2021;42(12):1082-95. doi:10.1016/j.tips.2021.10.001.
7. Ying L, Tippetts TS, Chaurasia B. Ceramide dependent lipotoxicity in metabolic diseases. Nutrition and Healthy Aging. 2019;5(1):1-12. doi:10.3233/NHA-170032.
8. Gruzdeva OV, Dyleva YA, Belik EV, et al. Relationship between Epicardial and Coronary Adipose Tissue and the Expression of Adiponectin, Leptin, and Interleukin 6 in Patients with Coronary Artery Disease. J Pers Med. 2022;12(2):129. doi:10.3390/jpm12020129.
9. Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nat Rev Cardiol. 2022;19(9):593-606. doi:10.1038/s41569-022-00679-9.
10. Chaurasia B, Tippetts TS, Monibas RM, et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science. 2019;365:386-92. doi:10.1126/science.aav3722.
11. Hadas Y, Vincek AS, Youssef E, et al. Altering Sphingolipid Metabolism Attenuates Cell Death and Inflammatory Response After Myocardial Infarction. Circulation. 2020;141:91630. doi:10.1161/CIRCULATIONAHA.119.041882.
12. Yu Z, Peng Q, Huang Y. Potential therapeutic targets for atherosclerosis in sphingolipid metabolism. Clin Sci (Lond). 2019;133(6):763-76. doi:10.1042/CS20180911.
13. van Eijk M, Aten J, Bijl N, et al. Reducing glycosphingolipid content in adipose tissue of obese mice restores insulin sensitivity, adipogenesis and reduces inflammation. PLoS One. 2009;4(3):e4723. doi:10.1371/journal.pone.0004723.
14. Hammerschmidt P, Brüning JC. Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci. 2022;79(8):395. doi:10.1007/s00018-022-04401-3.
15. Park TS, Panek RL, Rekhter MD, et al. Modulation of lipoprotein metabolism by inhibition of sphingomyelin synthesis in ApoE knockout mice. Atherosclerosis. 2006;189(2):264-72. doi:10.1016/j.atherosclerosis.2005.12.029.
16. Barchuk M, Ancel P, Miksztowicz V, et al. Epicardial Adipose Tissue Ceramides Are Related to Lipoprotein Lipase Activity in Coronary Artery Disease: Unfolding a Missing Link. Arterioscler Thromb Vasc Biol. 2022;42(8):e242-e251. doi:10.1161/ATVBAHA.122.317840.
17. Hussain MM, Jin W, Jiang XC. Mechanisms involved in cellular ceramide homeostasis. Nutr Metab (Lond). 2012;9(1):71. doi:10.1186/1743-7075-9-71.
18. Park T-S, Rosebury W, Kindt EK, et al. Serine palmitoyltransferase inhibitor myriocin induces the regression of atherosclerotic plaques in hyperlipidemic ApoE-deficient mice. Pharmacol Res. 2008;58:45-51. doi:10.1016/j.phrs.2008.06.005.
19. Kolak M, Gertow J, Westerbacka J, et al. Expression of ceramide-metabolising enzymes in subcutaneous and intra-abdominal human adipose tissue. Lipids Health Dis. 2012;11:115. doi:10.1186/1476-511X-11-115.
20. Cuschieri J, Bulger E, Billgrin J, et al. Acid sphingomyelinase is required for lipid Raft TLR4 complex formation. Surg Infect (Larchmt). 2007;8(1):91-106. doi:10.1089/sur.2006.050.
21. Wang P, Zeng G, Yan Y, et al. Disruption of adipocyte HIF-1α improves atherosclerosis through the inhibition of ceramide generation. Acta Pharm Sin B. 2022;12(4):1899-912. doi:10.1016/j.apsb.2021.10.001.
22. Argaud L, Prigent AF, Chalabreysse L, et al. Ceramide in the antiapoptotic effect of ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2004;286(1):H246-51. doi:10.1152/ajpheart.00638.2003.
23. Pan W, Yu J, Shi R, et al. Elevation of ceramide and activation of secretory acid sphingomyelinase in patients with acute coronary syndromes. Coron Artery Dis. 2014;25(3):230-5. doi:10.1097/MCA.0000000000000079.
24. Li Y, Talbot CL, Chaurasia B. Ceramides in Adipose Tissue. Front Endocrinol (Lausanne). 2020;11:407. doi:10.3389/fendo.2020.00407.
25. Parveen F, Bender D, Law SH, et al. Role of Ceramidases in Sphingolipid Metabolism and Human Diseases. Cells. 2019;8(12):1573. doi:10.3390/cells8121573.
26. Gault CR, Obeid LM, Hannun YA. An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol. 2010;688:1-23. doi:10.1007/978-1-4419-6741-1_1.
27. Choi RH, Tatum SM, Symons JD, et al. Ceramides and other sphingolipids as drivers of cardiovascular disease. Nat Rev Cardiol. 2021;18(10):701-11. doi:10.1038/s41569021-00536-1.
28. Li Z, Chiang YP, He M, et al. Effect of liver total sphingomyelin synthase deficiency on plasma lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(5):158898. doi:10.1016/j.bbalip.2021.158898.
29. Park JY, Lee SH, Shin MJ, et al. Alteration in metabolic signature and lipid metabolism in patients with angina pectoris and myocardial infarction. PLoS One. 2015;10(8):e0135228. doi:10.1371/journal.pone.0135228.