Статья
Математические модели и искусственный интеллект для исследования проблемы диссинхронии желудочков и улучшения эффективности сердечной ресинхронизирующей терапии
Обзор посвящен современному состоянию применения методов искусственного интеллекта (ИИ), математического моделирования (ММ) и их комбинации в анализе механизмов сердечной диссинхронии и ее коррекции при помощи сердечной ресинхронизирующей терапии (СРТ). Недавние научные статьи и обзоры демонстрируют высокую перспективность применения ИИ и ММ в персонализированной медицине, но также выявляют существующие препятствия к их внедрению в клиническую практику. Обсуждаемые работы посвящены ряду актуальных задач клинической кардиологии: анализу фенотипов пациентов с сердечной диссинхронией, поиску новых прогностических факторов эффективности СРТ, оптимизации стимуляции, построению высокоточных предиктивных моделей ответа на СРТ. Впервые дается обзор работ, в которых предлагаются комбинированные подходы с использованием механистических ММ и ИИ. Такие подходы открывают новые горизонты применения персонифицированных моделей сердца и для генерации реалистичных синтетических данных (цифровых двойников), на которых обучаются модели ИИ, и в качестве предикторов, которые наряду с клиническими признаками используются в обученных прогностических моделях ИИ для повышения точности персонифицированной диагностики, прогноза эффективности и оптимизации лечения.Обзор состоит из трех разделов, сфокусированных на исследованиях с использованием: 1) ИИ; 2) персонифицированных ММ желудочков сердца; 3) комбинированных подходов (ММ+ИИ).
1. Glikson M, Nielsen JC, Kronborg MB, et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J. 2021;42(35):3427-520. doi:10.1093/eurheartj/ehab364.
2. Wouters PC, Vernooy K, Cramer MJ, et al. Optimizing lead placement for pacing in dyssynchronous heart failure: The patient in the lead. Heart Rhythm. 2021;18(6):1024-32. doi:10.1016/j.hrthm.2021.02.011.
3. Butter C, Georgi C, Stockburger M. Optimal CRT Implantation — Where and How To Place the Left-Ventricular Lead? Curr Heart Fail Rep. 2021;18(5):329-44. doi:10.1007/s11897-021-00528-9.
4. Gautam N, Ghanta SN, Clausen A, et al. Contemporary Applications of Machine Learning for Device Therapy in Heart Failure. JACC Heart Fail. 2022;10(9):603-22. doi:10.1016/j.jchf.2022.06.011.
5. Magoon MJ, Nazer B, Akoum N, Boyle PM. Computational Medicine: What Electrophysiologists Should Know to Stay Ahead of the Curve. Curr Cardiol Rep. Published online September 20, 2024. doi:10.1007/s11886-024-02136-0.
6. Rodero C, Baptiste TMG, Barrows RK, et al. Advancing clinical translation of cardiac biomechanics models: a comprehensive review, applications and future pathways. Front Phys. 2023;11:1306210. doi:10.3389/fphy.2023.1306210.
7. Bifulco SF, Macheret F, Scott GD, et al. Explainable Machine Learning to Predict Anchored Reentry Substrate Created by Persistent Atrial Fibrillation Ablation in Computational Models. J Am Heart Assoc. 2023;12(16):e030500. doi:10.1161/JAHA.123.030500.
8. Gander L, Pezzuto S, Gharaviri A, et al. Fast Characterization of Inducible Regions of Atrial Fibrillation Models With Multi-Fidelity Gaussian Process Classification. Front Physiol. 2022;13:757159. doi:10.3389/fphys.2022.757159.
9. Luongo G, Azzolin L, Schuler S, et al. Machine learning enables noninvasive prediction of atrial fibrillation driver location and acute pulmonary vein ablation success using the 12-lead ECG. Cardiovasc Digit Health J. 2021;2(2):126-36. doi:10.1016/j.cvdhj.2021.03.002.
10. Halfar R, Lawson BAJ, Dos Santos RW, Burrage K. Machine Learning Identification of Proarrhythmic Structures in Cardiac Fibrosis. Front Physiol. 2021;12:709485. doi:10.3389/fphys.2021.709485.
11. Lozoya RC, Berte B, Cochet H, et al. Model-Based Feature Augmentation for Cardiac Ablation Target Learning From Images. IEEE Trans Biomed Eng. 2019;66(1):30-40. doi:10.1109/TBME.2018.2818300.
12. Trayanova NA, Lyon A, Shade J, Heijman J. Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation. Physiol Rev. 2024;104(3):1265-333. doi:10.1152/physrev.00017.2023.
13. De Lepper AGW, Buck CMA, Van ‘T Veer M, et al. From evidence-based medicine to digital twin technology for predicting ventricular tachycardia in ischaemic cardiomyopathy. J R Soc Interface. 2022;19(194):20220317. doi:10.1098/rsif.2022.0317.
14. Bai J, Lu Y, Wang H, Zhao J. How synergy between mechanistic and statistical models is impacting research in atrial fibrillation. Front Physiol. 2022;13:957604. doi:10.3389/fphys.2022.957604.
15. Nazar W, Szymanowicz S, Nazar K, et al. Artificial intelligence models in prediction of response to cardiac resynchronization therapy: a systematic review. Heart Fail Rev. 2024;29(1):133-50. doi:10.1007/s10741-023-10357-8.
16. Cai C, Tafti AP, Ngufor C, et al. Using ensemble of ensemble machine learning methods to predict outcomes of cardiac resynchronization. J Cardiovasc Electrophysiol. 2021;32(9):2504-14. doi:10.1111/jce.15171.
17. Haque A, Stubbs D, Hubig NC, et al. Interpretable machine learning predicts cardiac resynchronization therapy responses from personalized biochemical and biomechanical features. BMC Med Inform Decis Mak. 2022;22(1):282. doi:10.1186/s12911-022-02015-0.
18. Gallard A, Hubert A, Smiseth O, et al. Prediction of response to cardiac resynchronization therapy using a multi-feature learning method. Int J Cardiovasc Imaging. 2021;37(3):989-98. doi:10.1007/s10554-020-02083-1.
19. Dickstein K, Vardas PE, Auricchio A, et al. 2010 Focused Update of ESC Guidelines on device therapy in heart failure: An update of the 2008 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure and the 2007 ESC guidelines for cardiac and resynchronization therapy Developed with the special contribution of the Heart Failure Association and the European Heart Rhythm Association. Eur Heart J. 2010;31(21):2677-87. doi:10.1093/eurheartj/ehq337.
20. Bivona DJ, Tallavajhala S, Abdi M, et al. Machine learning for multidimensional response and survival after cardiac resynchronization therapy using features from cardiac magnetic resonance. Heart Rhythm O2. 2022;3(5):542-52. doi:10.1016/j.hroo.2022.06.005.
21. Puyol-Antón E, Chen C, Clough JR, et al. Interpretable Deep Models for Cardiac Resynchronisation Therapy Response Prediction. In: Martel AL, Abolmaesumi P, Stoyanov D, et al., eds. Medical Image Computing and Computer Assisted Intervention — MICCAI 2020. Springer International Publishing; 2020:284-93.
22. Puyol-Antón E, Sidhu BS, Gould J, et al. A multimodal deep learning model for cardiac resynchronisation therapy response prediction. Med Image Anal. 2022;79:102465. doi:10.1016/j.media.2022.102465.
23. Wouters PC, van de Leur RR, Vessies MB, et al. Electrocardiogram-based deep learning improves outcome prediction following cardiac resynchronization therapy. Eur Heart J. 2023;44(8):680-92. doi:10.1093/eurheartj/ehac617.
24. Krzowski B, Rokicki J, Główczyńska R, et al. The Use of Machine Learning Algorithms in the Evaluation of the Effectiveness of Resynchronization Therapy. J Cardiovasc Dev Dis. 2022;9(1). doi:10.3390/jcdd9010017.
25. He Z, Zhang X, Zhao C, et al. A method using deep learning to discover new predictors from left-ventricular mechanical dyssynchrony for CRT response. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2023;30(1):201-13. doi:10.1007/s12350-022-03067-5.
26. de A Fernandes F, Larsen K, He Z, et al. A machine learning method integrating ECG and gated SPECT for cardiac resynchronization therapy decision support. Eur J Nucl Med Mol Imaging. 2023;50(10):3022-33. doi:10.1007/s00259-023-06259-4.
27. Howell SJ, Stivland T, Stein K, et al. Using Machine-Learning for Prediction of the Response to Cardiac Resynchronization Therapy: The SMART-AV Study. JACC Clin Electrophysiol. 2021;7(12):1505-15. doi:10.1016/j.jacep.2021.06.009.
28. Tokodi M, Schwertner WR, Kovács A, et al. Machine learning-based mortality prediction of patients undergoing cardiac resynchronization therapy: the SEMMELWEIS-CRT score. Eur Heart J. 2020;41(18):1747-56. doi:10.1093/eurheartj/ehz902.
29. Liang Y, Ding R, Wang J, et al. Prediction of response after cardiac resynchronization therapy with machine learning. Int J Cardiol. 2021;344:120-6. doi:10.1016/j.ijcard.2021.09.049.
30. Lee AWC, Costa CM, Strocchi M, et al. Computational Modeling for Cardiac Resynchronization Therapy. J Cardiovasc Transl Res. 2018;11(2):92-108. doi:10.1007/s12265-017-9779-4.
31. Bozkurt S. Mathematical modeling of cardiac function to evaluate clinical cases in adults and children. Tolkacheva EG, ed. PLOS ONE. 2019;14(10):e0224663. doi:10.1371/journal.pone.0224663.
32. Shi Y, Lawford P, Hose R. Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System. Biomed Eng OnLine. 2011;10(1):33. doi:10.1186/1475-925X-10-33.
33. Solovyova O, Katsnelson LB, Kohl P, et al. Mechano-electric heterogeneity of the myocardium as a paradigm of its function. Prog Biophys Mol Biol. 2016;120(1-3):249-54. doi:10.1016/j.pbiomolbio.2015.12.007.
34. Keener JP. An eikonal-curvature equation for action potential propagation in myocardium. J Math Biol. 1991;29(7):629-51. doi:10.1007/BF00163916.
35. Wallman M, Smith NP, Rodriguez B. A Comparative Study of Graph-Based, Eikonal, and Monodomain Simulations for the Estimation of Cardiac Activation Times. IEEE Trans Biomed Eng. 2012;59(6):1739-48. doi:10.1109/TBME.2012.2193398.
36. Neic A, Campos FO, Prassl AJ, et al. Efficient computation of electrograms and ECGs in human whole heart simulations using a reaction-eikonal model. J Comput Phys. 2017;346:191-211. doi:10.1016/j.jcp.2017.06.020.
37. Corral-Acero J, Margara F, Marciniak M, et al. The ‘Digital Twin’ to enable the vision of precision cardiology. Eur Heart J. 2020;41(48):4556-64. doi:10.1093/eurheartj/ehaa159.
38. Di Achille P, Harouni A, Khamzin S, et al. Gaussian Process Regressions for Inverse Problems and Parameter Searches in Models of Ventricular Mechanics. Front Physiol. 2018;9:1002. doi:10.3389/fphys.2018.01002.
39. Arts T, Delhaas T, Bovendeerd P, et al. Adaptation to mechanical load determines shape and properties of heart and circulation: the CircAdapt model. Am J Physiol-Heart Circ Physiol. 2005;288(4):H1943-H1954. doi:10.1152/ajpheart.00444.2004.
40. Strocchi M, Lee AWC, Neic A, et al. His-bundle and left bundle pacing with optimized atrioventricular delay achieve superior electrical synchrony over endocardial and epicardial pacing in left bundle branch block patients. Heart Rhythm. 2020;17(11):1922-9. doi:10.1016/j.hrthm.2020.06.028.
41. Strocchi M, Wijesuriya N, Elliott MK, et al. Leadless biventricular left bundle and endocardial lateral wall pacing versus left bundle only pacing in left bundle branch block patients. Front Physiol. 2022;13:1049214. doi:10.3389/fphys.2022.1049214.
42. Strocchi M, Gillette K, Neic A, et al. Effect of scar and His-Purkinje and myocardium conduction on response to conduction system pacing. J Cardiovasc Electrophysiol. 2023;34(4):984-93. doi:10.1111/jce.15847.
43. Rodero C, Strocchi M, Lee AWC, et al. Impact of anatomical reverse remodelling in the design of optimal quadripolar pacing leads: A computational study. Comput Biol Med. 2022;140:105073. doi:10.1016/j.compbiomed.2021.105073.
44. Melgaard J, van Dam PM, Sommer A, et al. Non-invasive estimation of QLV from the standard 12-lead ECG in patients with left bundle branch block. Front Physiol. 2022;13:939240. doi:10.3389/fphys.2022.939240.
45. Albatat M, Arevalo H, Bergsland J, et al. Optimal pacing sites in cardiac resynchronization by left ventricular activation front analysis. Comput Biol Med. 2021;128:104159. doi:10.1016/j.compbiomed.2020.104159.
46. Sidhu BS, Lee AWC, Gould J, et al. Guided implantation of a leadless left ventricular endocardial electrode and acoustic transmitter using computed tomography anatomy, dynamic perfusion and mechanics, and predicted activation pattern. Heart Rhythm. 2023;20(11):1481-8. doi:10.1016/j.hrthm.2023.07.007.
47. Lee AWC, Razeghi O, Solis-Lemus JA, et al. Non-invasive simulated electrical and measured mechanical indices predict response to cardiac resynchronization therapy. Comput Biol Med. 2021;138:104872. doi:10.1016/j.compbiomed.2021.104872.
48. Strocchi M, Gillette K, Neic A, et al. Comparison between conduction system pacing and cardiac resynchronization therapy in right bundle branch block patients. Front Physiol. 2022;13:1011566. doi:10.3389/fphys.2022.1011566.
49. Vergara C, Stella S, Maines M, et al. Computational electrophysiology of the coronary sinus branches based on electro-anatomical mapping for the prediction of the latest activated region. Med Biol Eng Comput. 2022;60(8):2307-19. doi:10.1007/s11517-022-02610-3.
50. Albatat M, Finsberg HN, Arevalo H, et al. Regional Left Ventricular Fiber Stress Analysis for Cardiac Resynchronization Therapy Response. Ann Biomed Eng. 2023;51(2):343-51. doi:10.1007/s10439-022-03030-y.
51. Strocchi M, Neic A, Gsell M, et al. His Bundle Pacing but not Left Bundle Pacing Corrects Septal Flash in Left Bundle Branch Block Patients. In: 2020. doi:10.22489/CinC.2020.030.
52. Craine A, Krishnamurthy A, Villongco CT, et al. Successful cardiac resynchronization therapy reduces negative septal work in patient-specific models of dyssynchronous heart failure. PLOS Comput Biol. 2024;20(10):e1012150. doi:10.1371/journal.pcbi.1012150.
53. Isotani A, Yoneda K, Iwamura T, et al. Patient-specific heart simulation can identify non-responders to cardiac resynchronization therapy. Heart Vessels. 2020;35(8):1135-47. doi:10.1007/s00380-020-01577-1.
54. Koopsen T, Gerrits W, van Osta N, et al. Virtual pacing of a patient’s digital twin to predict left ventricular reverse remodelling after cardiac resynchronization therapy. Eur Eur Pacing Arrhythm Card Electrophysiol J Work Groups Card Pacing Arrhythm Card Cell Electrophysiol Eur Soc Cardiol. 2023;26(1). doi:10.1093/europace/euae009.
55. Ložek M, Kovanda J, Kubuš P, et al. How to assess and treat right ventricular electromechanical dyssynchrony in post-repair tetralogy of Fallot: insights from imaging, invasive studies, and computational modelling. Eur Eur Pacing Arrhythm Card Electrophysiol J Work Groups Card Pacing Arrhythm Card Cell Electrophysiol Eur Soc Cardiol. 2024;26(2). doi:10.1093/europace/euae024.
56. Taconné M, Le Rolle V, Galli E, et al. Characterization of cardiac resynchronization therapy response through machine learning and personalized models. Comput Biol Med. 2024;180:108986. doi:10.1016/j.compbiomed.2024.108986.
57. Bayer JD, Blake RC, Plank G, Trayanova NA. A Novel Rule-Based Algorithm for Assigning Myocardial Fiber Orientation to Computational Heart Models. Ann Biomed Eng. 2012;40(10):2243-54. doi:10.1007/s10439-012-0593-5.
58. Bishop MJ, Hales P, Plank G, et al. Comparison of Rule-Based and DTMRI-Derived Fibre Architecture in a Whole Rat Ventricular Computational Model. In: Ayache N, Delingette H, Sermesant M, eds. Functional Imaging and Modeling of the Heart. Springer Berlin Heidelberg; 2009:87-96.
59. Strocchi M, Wijesuriya N, Mehta V, et al. Computational Modelling Enabling In Silico Trials for Cardiac Physiologic Pacing. J Cardiovasc Transl Res. 2024;17(3):685-94. doi:10.1007/s12265-023-10453-y.
60. Khamzin S, Dokuchaev A, Bazhutina A, et al. Machine Learning Prediction of Cardiac Resynchronisation Therapy Response From Combination of Clinical and Model-Driven Data. Front Physiol. 2021;12. doi:10.3389/fphys.2021.753282.
61. Dokuchaev A, Chumarnaya T, Bazhutina A, et al. Combination of personalized computational modeling and machine learning for optimization of left ventricular pacing site in cardiac resynchronization therapy. Front Physiol. 2023;14:1162520. doi:10.3389/fphys.2023.1162520.
62. Bazhutina A, Ushenin K, Khamzin S, et al. Personalized Cardiac Computer Models and Machine-Learning for Target Vein Selection in Cardiac Resynchronisation Therapy. In: 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB). 2023:236-41. doi:10.1109/CSGB60362.2023.10329851.
63. Strauss DG, Selvester RH, Wagner GS. Defining left bundle branch block in the era of cardiac resynchronization therapy. Am J Cardiol. 2011;107(6):927-34. doi:10.1016/j.amjcard.2010.11.010.
64. Feeny AK, Rickard J, Patel D, et al. Machine Learning Prediction of Response to Cardiac Resynchronization Therapy. Circ Arrhythm Electrophysiol. 2019;12(7):e007316. doi:10.1161/CIRCEP.119.007316.
65. Sahli Costabal F, Hurtado DE, Kuhl E. Generating Purkinje networks in the human heart. Cardiovasc Biomech Health Dis. 2016;49(12):2455-65. doi:10.1016/j.jbiomech.2015.12.025.
66. Korantzopoulos P, Zhang Z, Li G, et al. Meta-Analysis of the Usefulness of Change in QRS Width to Predict Response to Cardiac Resynchronization Therapy. Am J Cardiol. 2016;118(9):1368-73. doi:10.1016/j.amjcard.2016.07.070.
67. Jastrzębski M, Baranchuk A, Fijorek K, et al. Cardiac resynchronization therapy-induced acute shortening of QRS duration predicts long-term mortality only in patients with left bundle branch block. EP Eur. 2019;21(2):281-9. doi:10.1093/europace/euy254.
68. Coppola G, Ciaramitaro G, Stabile G, et al. Magnitude of QRS duration reduction after biventricular pacing identifies responders to cardiac resynchronization therapy. Int J Cardiol. 2016;221:450-5. doi:10.1016/j.ijcard.2016.06.203.
69. Molhoek SG, Bax JJ, Boersma E, et al. QRS Duration and Shortening to Predict Clinical Response to Cardiac Resynchronization Therapy in Patients with End‐Stage Heart Failure. Pacing Clin Electrophysiol. 2004;27(3):308-13. doi:10.1111/j.1540-8159.2004.00433.x.
70. Rickard J, Popovic Z, Verhaert D, et al. The QRS Narrowing Index Predicts Reverse Left Ventricular Remodeling Following Cardiac Resynchronization Therapy. Pacing Clin Electrophysiol. 2011;34(5):604-11. doi:10.1111/j.1540-8159.2010.03022.x.
71. Bishop MJ, Plank G. Bidomain ECG simulations using an augmented monodomain model for the cardiac source. IEEE Trans Biomed Eng. 2011;58(8). doi:10.1109/TBME.2011.2148718.
72. Echouffo‐Tcheugui JB, Masoudi FA, Bao H, et al. Body mass index and outcomes of cardiac resynchronization with implantable cardioverter‐defibrillator therapy in older patients with heart failure. Eur J Heart Fail. 2019;21(9):1093-102. doi:10.1002/ejhf.1552.
73. Rasmussen CE, Nickisch H. Gaussian Processes for Machine Learning (GPML) Toolbox. J Mach Learn Res. 2010;11(100):3011-35.
74. Mockus J, Belevičius R, Šešok D, et al. On Bayesian approach to grillage optimization. Inf Technol Control. 2012;41(4):332-9. doi:10.5755/j01.itc.41.4.1670.
75. Pereira H, Jackson TA, Claridge S, et al. Comparison of Echocardiographic and Electrocardiographic Mapping for Cardiac Resynchronisation Therapy Optimisation. Cardiol Res Pract. 2019;2019:1-9. doi:10.1155/2019/4351693.
76. Zweerink A, Zubarev S, Bakelants E, et al. His-Optimized Cardiac Resynchronization Therapy With Ventricular Fusion Pacing for Electrical Resynchronization in Heart Failure. JACC Clin Electrophysiol. 2021;7(7):881-92. doi:10.1016/j.jacep.2020.11.029.
77. Fyenbo DB, Sommer A, Nørgaard BL, et al. Long-term outcomes in a randomized controlled trial of multimodality imaging-guided left ventricular lead placement in cardiac resynchronization therapy. EP Eur. 2022;24(5):828-34. doi:10.1093/europace/euab314.
78. Bayer J, Prassl AJ, Pashaei A, et al. Universal ventricular coordinates: A generic frame-work for describing position within the heart and transferring data. Med Image Anal. 2018;45:83-93. doi:10.1016/j.media.2018.01.005.
79. Ward JH. Hierarchical Grouping to Optimize an Objective Function. J Am Stat Assoc. 1963;58(301):236-44. doi:10.1080/01621459.1963.10500845.
80. Sommer A, Kronborg MB, Nørgaard BL, et al. Longer inter-lead electrical delay is associated with response to cardiac resynchronization therapy in patients with presumed optimal left ventricular lead position. EP Eur. 2018;20(10):1630-7. doi:10.1093/europace/eux384.
81. Stephansen C, Sommer A, Kronborg MB, et al. Electrically vs. imaging-guided left ventricular lead placement in cardiac resynchronization therapy: a randomized controlled trial. EP Eur. 2019;21(9):1369-77. doi:10.1093/europace/euz184.
82. Lim P, Donal E, Lafitte S, et al. Multicentre study using strain delay index for predicting response to cardiac resynchronization therapy (MUSIC study). Eur J Heart Fail. 2011;13(9):984-91. doi:10.1093/eurjhf/hfr073.
83. Vecera J, Penicka M, Eriksen M, et al. Wasted septal work in left ventricular dyssynchrony: a novel principle to predict response to cardiac resynchronization therapy. Eur Heart J — Cardiovasc Imaging. 2016;17(6):624-32. doi:10.1093/ehjci/jew019.
84. Hasselberg NE, Haugaa KH, Bernard A, et al. Left ventricular markers of mortality and ventricular arrhythmias in heart failure patients with cardiac resynchronization therapy. Eur Heart J — Cardiovasc Imaging. 2016;17(3):343-50. doi:10.1093/ehjci/jev173.
85. Galli E, Leclercq C, Fournet M, et al. Value of Myocardial Work Estimation in the Prediction of Response to Cardiac Resynchronization Therapy. J Am Soc Echocardiogr. 2018;31(2):220-30. doi:10.1016/j.echo.2017.10.009.
86. Sohal M, Hamid S, Perego G, et al. A multicenter prospective randomized controlled trial of cardiac resynchronization therapy guided by invasive dP/dt. Heart Rhythm O2. 2021;2(1):19-27. doi:10.1016/j.hroo.2021.01.005.
87. Ghannam M, Cochet H, Jais P, et al. Correlation between computer tomography‐derived scar topography and critical ablation sites in postinfarction ventricular tachycardia. J Cardiovasc Electrophysiol. 2018;29(3):438-45. doi:10.1111/jce.13441.
88. Marsan NA, Westenberg JJM, Ypenburg C, et al. Magnetic resonance imaging and response to cardiac resynchronization therapy: relative merits of left ventricular dyssynchrony and scar tissue. Eur Heart J. 2009;30(19):2360-7. doi:10.1093/eurheartj/ehp280.
89. Chalil S, Foley PWX, Muyhaldeen SA, et al. Late gadolinium enhancement-cardiovascular magnetic resonance as a predictor of response to cardiac resynchronization therapy in patients with ischaemic cardiomyopathy. Europace. 2007;9(11):1031-7. doi:10.1093/europace/eum133.
90. Чумарная Т. В., Любимцева Т. А., Лебедева В. К., Гасымова Н. З., Лебедев Д. С., Соловьева О. Э. Оценка межжелудочковой электрической задержки при сердечной ресинхронизирующей терапии у пациентов с квадриполярными системами в долгосрочном послеоперационном наблюдении. Российский кардиологический журнал. 2022;27(7):5121. doi:10.15829/1560-4071-2022-5121.
91. Taconné M, Le Rolle V, Gallard A, et al. Model-based and Unsupervised Machine-learning Approaches for the Characterization of Responder Profiles for Cardiac Resynchronization Therapy. In: 2022. doi:10.22489/CinC.2022.324.
92. Duport O, Rolle VL, Guerrero G, et al. Parametric analysis of an integrated cardiorespiratory model in preterm newborns during apnea. Comput Biol Med. 2024;173:108343. doi:10.1016/j.compbiomed.2024.108343.
93. Sermesant M, Chabiniok R, Chinchapatnam P, et al. Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: A preliminary clinical validation. Med Image Anal. 2012;16(1):201-15. doi:10.1016/j.media.2011.07.003.
94. Li G, He B. Localization of the site of origin of cardiac activation by means of a heart-model-based electrocardiographic imaging approach. IEEE Trans Biomed Eng. 2001;48(6):660-9. doi:10.1109/10.923784.
95. Giffard-Roisin S, Jackson T, Fovargue L, et al. Noninvasive Personalization of a Cardiac Electrophysiology Model From Body Surface Potential Mapping. IEEE Trans Biomed Eng. 2017;64(9):2206-18. doi:10.1109/TBME.2016.2629849.
96. Dhamala J, Arevalo HJ, Sapp J, et al. Spatially Adaptive Multi-Scale Optimization for Local Parameter Estimation in Cardiac Electrophysiology. IEEE Trans Med Imaging. 2017;36(9):1966-78. doi:10.1109/TMI.2017.2697820.
97. Giffard-Roisin S, Delingette H, Jackson T, et al. Transfer Learning From Simulations on a Reference Anatomy for ECGI in Personalized Cardiac Resynchronization Therapy. IEEE Trans Biomed Eng. 2019;66(2):343-53. doi:10.1109/TBME.2018.2839713.
98. Mitchell C. A two-current model for the dynamics of cardiac membrane. Bull Math Biol. 2003;65(5):767-93. doi:10.1016/S0092-8240(03)00041-7.
99. Tipping ME, Faul AC. Fast Marginal Likelihood Maximisation for Sparse Bayesian Models. In: International Workshop on Artificial Intelligence and Statistics. PMLR. 2003:276-83.
100. Bacoyannis T, Ly B, Cedilnik N, et al. Deep learning formulation of electrocardiographic imaging integrating image and signal information with data-driven regularization. EP Eur. 2021;23(Supplement_1):i55-i62. doi:10.1093/europace/euaa391.
101. Pilia N, Schuler S, Rees M, et al. Non-invasive localization of the ventricular excitation origin without patient-specific geometries using deep learning. Artif Intell Med. 2023;143:102619. doi:10.1016/j.artmed.2023.102619.
102. Li L, Camps J, Rodriguez B, Grau V. Solving the Inverse Problem of Electrocardiography for Cardiac Digital Twins: A Survey. IEEE Rev Biomed Eng. Published online 2024:1-19. doi:10.1109/RBME.2024.3486439.