Статья
Приложения искусственного интеллекта в кардиологии: обзор
В обзорной статье рассмотрены ключевые приложения искусственного интеллекта (ИИ) в кардиологии. Структура обзора включает подразделы, посвященные слабому (прикладному) и сильному (общему) ИИ, применяемым в клинической практике и при организации кардиологической помощи. Описаны варианты применения ИИ в анализе данных электрокардиографии, эхокардиографии, сонографии, компьютерной томографии, магнитно-резонансной томографии, позитронно-эмиссионной томографии сердца. Кратко изложены аспекты применения машинного обучения и ИИ для обработки вызовов больных с кардиологическими жалобами на станцию скорой помощи, рассмотрены приложения ИИ к проблемам превентивной кардиологии. В обзоре рассмотрены возможности применения ИИ при анализе массивов данных, полученных при проведении тонометрии, измерении скорости пульсовой волны, в биохимических исследованиях. В работе сформулированы также принципы применения общего ИИ (больших языковых моделей) при организации кардиологической медицинской помощи, выделены основные проблемы и сложности внедрения новейшей технологии, приведена концептуальная схема внедрения технологии ИИ в работу лечебно-профилактического учреждения кардиологического профиля. В работе выделены основные факторы, ограничивающие возможности внедрения технологии больших языковых моделей, такие как отсутствие стандартизированных алгоритмов сбора и оформления клинических данных, отсутствие понимания машиной контекста, невозможность моделей формировать экспертные клинические суждения, появление множественных проблем этического характера при использовании больших языковых моделей.
1. Fjelland R.Why General Artificial Intelligence will not be realized. Humanities and Social Sciences Communications. 2020;7(1). doi:10.1057/s41599-020-0494-4.
2. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J. 2019;6(2):94-8. doi:10.7861/futurehosp.6-2-94.
3. Seetharam K, Balla S, Bianco C, et al. Applications of machine learning in cardiology. Cardiology and Therapy. 2022;11(3):355-68. doi:10.1007/s40119-022-00273-7.
4. Cuocolo R, Perillo T, De Rosa E, et al. Current applications of big data and machine learning in cardiology. J Geriatr Cardiol. 2019;16(8):601-7. doi:10.11909/j.issn.1671-5411.2019.08.002.
5. Siontis KC, Noseworthy PA, Attia ZI, Friedman PA. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat Rev Cardiol. 2021;18(7): 465-78. doi:10.1038/s41569-020-00503-2.
6. Mincholé A, Camps J, Lyon A, Rodríguez B. Machine learning in the electrocardiogram. Journal of electrocardiology. 2019;57:S61-4. doi:10.1016/j.jelectrocard.2019. 08.008.
7. Krittanawong C, Zhang H, Wang Z, et al. Artificial Intelligence in Precision Cardiovascular Medicine. J Am Coll Cardiol. 2017;69(21):2657-64. doi:10.1016/j.jacc.2017.03.571.
8. Yao X, Rushlow DR, Inselman JW, et al. Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial. Nat Med. 2021;27(5):815-9. doi:10.1038/s41591-021-01335-4.
9. Tse G, Lee S, Zhou J, et al. Territory-Wide Chinese Cohort of Long QT Syndrome: Random Survival Forest and Cox Analyses. Front Cardiovasc Med. 2021;8:608592. doi:10.3389/fcvm.2021.608592.
10. Chung CT, Bazoukis G, Lee S, et al. Machine learning techniques for arrhythmic risk stratification: a review of the literature. Int J Arrhythmia. 2022;23:10. doi:10.1186/s42444-022-00062-2.
11. Lee S, Zhou J, Jeevaratnam K, et al. Paediatric/young versus adult patients with long QT syndrome. Open Heart. 2021;8(2):e001671. doi:10.1136/openhrt-2021-001671.
12. Kwon JM, Jo YY, Lee SY, Kim KH. Artificial intelligence using electrocardiography: strengths and pitfalls. Eur Heart J. 2021;42(30):2896-8. doi:10.1093/eurheartj/ehab090.
13. Swathy M, Saruladha K. A comparative study of classification and prediction of CardioVascular Diseases (CVD) using Machine Learning and Deep Learning techniques. ICT Express. 2022;8(1):109-16. doi:10.1016/j.icte.2021.08.021.
14. Salte IM, Østvik A, Smistad E, et al. Artificial Intelligence for Automatic Measurement of Left Ventricular Strain in Echocardiography. JACC Cardiovasc Imaging. 2021;14(10): 1918-28. doi:10.1016/j.jcmg.2021.04.018.
15. Mamalakis M, Garg P, Nelson T, et al. Artificial Intelligence framework with traditional computer vision and deep learning approaches for optimal automatic segmentation of left ventricle with scar. Artificial Intelligence in Medicine. 2023:102610. doi:10.1016/j.artmed.2023.102610.
16. Sun ZY, Li Q, Li J, et al. Echocardiographic evaluation of the right atrial size and function: Relevance for clinical practice. American Heart Journal Plus: Cardiology Research and Practice. 2023:100274. doi:10.1016/j.ahjo.2023.100274.
17. Sveric KM, Ulbrich S, Dindane Z, et al. Improved assessment of left ventricular ejection fraction using artificial intelligence in echocardiography: A comparative analysis with cardiac magnetic resonance imaging. Int J Cardiol. 2023. doi:10.1016/j.ijcard.2023.131383.
18. Wang S, Chauhan D, Patel H, et al. Assessment of right ventricular size and function from cardiovascular magnetic resonance images using artificial intelligence. J Cardiovasc Magn Reson. 2022;24(1):27. doi:10.1186/s12968-022-00861-5.
19. Chen C, Qin C, Qiu H, et al. Deep Learning for Cardiac Image Segmentation: A Review. Front Cardiovasc Med. 2020;7:25. doi:10.3389/fcvm.2020.00025.
20. Jani V, Danford DA, Thompson WR, et al. The discerning ear: cardiac auscultation in the era of artificial intelligence and telemedicine. Eur Heart J Digit Health. 2021;2(3):456-66. doi:10.1093/ehjdh/ztab059.
21. Kang S, Doroshow R, McConnaughey J, Shekhar R. Automated Identification of Innocent Still's Murmur in Children. IEEE Trans Biomed Eng. 2017;64(6):1326-34. doi:10.1109/tbme.2016.2603787.
22. Grgic-Mustafic R, Baik-Schneditz N, Schwaberger B, et al. Novel algorithm to screen for heart murmurs using computer-aided auscultation in neonates: a prospective single center pilot observational study. Minerva Pediatr. 2019;71(3):221-8. doi:10.23736/s0026-4946.18.04974-5.
23. Lv J, Dong B, Lei H, et al. Artificial intelligence-assisted auscultation in detecting congenital heart disease. Eur Heart J Digit Health. 2021;2(1):119-24. doi:10.1093/ehjdh/ztaa017.
24. Bustin A, Fuin N, Botnar RM, Prieto C. From Compressed-Sensing to Artificial IntelligenceBased Cardiac MRI Reconstruction. Front Cardiovasc Med. 2020;7:17. doi:10.3389/fcvm.2020.00017.
25. Pan J, Ng SM, Neubauer S, Rider OJ. Phenotyping heart failure by cardiac magnetic resonance imaging of cardiac macro- and microscopic structure: state of the art review. Eur Heart J Cardiovasc Imaging. 2023;24(10):1302-17. doi:10.1093/ehjci/jead124.
26. van Assen M, Muscogiuri G, Caruso D, et al. Artificial intelligence in cardiac radiology. Radiol Med. 2020;125(11):1186-99. doi:10.1007/s11547-020-01277-w.
27. Monti CB, Codari M, van Assen M, et al. Machine Learning and Deep Neural Networks Applications in Computed Tomography for Coronary Artery Disease and Myocardial Perfusion. J Thorac Imaging. 2020;35 Suppl 1:S58-S65. doi:10.1097/rti.0000000000000490.
28. Fischer AM, Eid M, De Cecco CN, et al. Accuracy of an Artificial Intelligence Deep Learning Algorithm Implementing a Recurrent Neural Network With Long Short-term Memory for the Automated Detection of Calcified Plaques From Coronary Computed Tomography Angiography. J Thorac Imaging. 2020;35 Suppl 1:S49-S57. doi:10.1097/rti.0000000000000491.
29. Cau R, Flanders A, Mannelli L, et al. Artificial intelligence in computed tomography plaque characterization: A review. Eur J Radiol. 2021;140:109767. doi:10.1016/j.ejrad.2021.109767.
30. Muscogiuri G, Chiesa M, Baggiano A, et al. Diagnostic performance of deep learning algorithm for analysis of computed tomography myocardial perfusion. Eur J Nucl Med Mol Imaging. 2022;49(9):3119-28. doi:10.1007/s00259-022-05732-w.
31. Popescu C, Laudicella R, Baldari S, et al. PET-based artificial intelligence applications in cardiac nuclear medicine. Swiss Med Wkly. 2022;152:w30123. doi:10.4414/smw.2022.w30123.
32. Visco V, Izzo C, Mancusi C, et al. Artificial Intelligence in Hypertension Management: An Ace up Your Sleeve. J Cardiovasc Dev Dis. 2023;10(2):74. doi:10.3390/jcdd10020074.
33. Vargas JM, Bahloul MA, Laleg-Kirati TM. A learning-based image processing approach for pulse wave velocity estimation using spectrogram from peripheral pulse wave signals: An in silico study. Front Physiol. 2023;14:1100570. doi:10.3389/fphys.2023.1100570.
34. Blomberg SN, Folke F, Ersbøll AK, et al. Machine learning as a supportive tool to recognize cardiac arrest in emergency calls. Resuscitation. 2019;138:322-9. doi:10.1016/j.resuscitation.2019.01.015.
35. Attia ZI, Harmon DM, Dugan J, et al. Prospective evaluation of smartwatch-enabled detection of left ventricular dysfunction. Nat Med. 2022;28(12):2497-503. doi:10.1038/s41591-022-02053-1.
36. Noseworthy PA, Attia ZI, Behnken EM, et al. Artificial intelligence-guided screening for atrial fibrillation using electrocardiogram during sinus rhythm: a prospective nonrandomised interventional trial. Lancet. 2022;400(10359):1206-12. doi:10.1016/S0140-6736(22)01637-3.
37. Ciccarelli M, Giallauria F, Carrizzo A, et al. Artificial intelligence in cardiovascular prevention: new ways will open new doors. J Cardiovasc Med (Hagerstown). 2023;24(Suppl 2): e106-e115. doi:10.2459/JCM.0000000000001431.
38. Ledziński Ł, Grześk G. Artificial Intelligence Technologies in Cardiology. J Cardiovasc Dev Dis. 2023;10(5):202. doi:10.3390/jcdd10050202.
39. Sarraju A, Ouyang D, Itchhaporia D. The Opportunities and Challenges of Large Language Models in Cardiology. JACC: Advances. 2023;2(7):100438. doi:10.1016/j.jacadv.2023.100438.
40. Sarraju A, Bruemmer D, Van Iterson E, et al. Appropriateness of cardiovascular disease prevention recommendations obtained from a popular online chat-based artificial intelligence model. JAMA. 2023;329:842-4. doi:10.1001/jama.2023.1044.
41. Lee P, Bubeck S, Petro J. Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine. N Engl J Med. 2023;388:1233-9. doi:10.1056/NEJMsr2214184.
42. Wu E, Wu K, Daneshjou R, et al. How medical AI devices are evaluated: limitations and recommendations from an analysis of FDA approvals. Nat Med. 2021;27:582-4. doi:10.1038/s41591-021-01312-x.
43. Skalidis I, Cagnina A, Fournier S. Use of large language models for evidence-based cardiovascular medicine. Eur Heart J Digit Health. 2023;4(5):368-9. doi:10.1093/ehjdh/ztad041.
44. Klang E, Cohen-Shelly M, Lopez-Jimenez F. Leveraging Large Language Models to Enhance Digital Health in Cardiology: A Preview of a Cutting-Edge Language Generation Model. Mayo Clin Proc: Digital Health. 2023;1(2):105-8. doi:10.1016/j.mcpdig.2023.03.003.
45. Smith M, Sattler A, Hong G, Lin S. From code to bedside: implementing artificial intelligence using quality improvement methods. Journal of General Internal Medicine. 2021;36(4):1061-6. doi:10.1007/s11606-020-06394-w.
46. Petersson L, Larsson I, Nygren JM, et al. Challenges to implementing artificial intelligence in healthcare: a qualitative interview study with healthcare leaders in Sweden. BMC Health Services Research. 2022;22(1):850.