1. Adhikari A, Asdaq SMB, Al Hawaj MA, Chakraborty M, Thapa G, Bhuyan NR et al. Anticancer Drug-Induced Cardiotoxicity: Insights and Pharmacogenetics. Pharmaceuticals. 2021;14(10):970. DOI: 10.3390/ph14100970
2. Mitry MA, Edwards JG. Doxorubicin induced heart failure: Pheno type and molecular mechanisms. IJC Heart & Vasculature. 2016;10:17–24. DOI: 10.1016/j.ijcha.2015.11.004
3. Fabiani I, Aimo A, Grigoratos C, Castiglione V, Gentile F, Saccaro LF et al. Oxidative stress and inflammation: determinants of anthracycline cardiotoxicity and possible therapeutic targets. Heart Failure Reviews. 2021;26(4):881–90. DOI: 10.1007/s10741-020-10063-9
4. Bansal N, Adams MJ, Ganatra S, Colan SD, Aggarwal S, Steiner R et al. Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardio-Oncology (London, England). 2019;5:18. DOI: 10.1186/s40959-019-0054-5
5. Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicology Letters. 2019;307:41–8. DOI: 10.1016/j.toxlet.2019.02.013
6. Aminkeng F, Ross CJD, Rassekh SR, Hwang S, Rieder MJ, Bhavsar AP et al. Recommendations for genetic testing to reduce the incidence of anthracycline‐induced cardiotoxicity. British Journal of Clinical Pharmacology. 2016;82(3):683–95. DOI: 10.1111/bcp.13008
7. Соничева Н.А., Затейщиков Д.А. Кардиология: время генетики. Consilium Medicum. 2020;22(5):35-9]. DOI: 10.26442/20751753.2020.5.200185
8. Wenningmann N, Knapp M, Ande A, Vaidya TR, Ait-Oudhia S. Insights into Doxorubicin-induced Cardiotoxicity: Molecular Mechanisms, Preventive Strategies, and Early Monitoring. Molecular Pharmacology. 2019;96(2):219–32. DOI: 10.1124/mol.119.115725
9. Osataphan N, Phrommintikul A, Chattipakorn SC, Chattipakorn N. Effects of doxorubicin‐induced cardiotoxicity on cardiac mitochondrial dynamics and mitochondrial function: Insights for future interventions. Journal of Cellular and Molecular Medicine. 2020;24(12):6534–57. DOI: 10.1111/jcmm.15305
10. Tadokoro T, Ikeda M, Ide T, Deguchi H, Ikeda S, Okabe K et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight. 2020;5(9):e132747. DOI: 10.1172/jci.insight.132747
11. Gallo S, Spilinga M, Albano R, Ferrauto G, Di Gregorio E, Casanova E et al. Activation of the MET receptor attenuates doxorubicin‐induced cardiotoxicity in vivo and in vitro. British Journal of Pharmacology. 2020;177(13):3107–22. DOI: 10.1111/bph.15039
12. Grakova EV, Shilov SN, Kopeva KV, Berezikova EN, Popova AA, Neupokoeva MN et al. Anthracycline-Induced Cardiotoxicity: The Role of Endothelial Dysfunction. Cardiology. 2021;146(3):315–23. DOI: 10.1159/000512771
13. Yarmohammadi F, Rezaee R, Karimi G. Natural compounds against doxorubicin‐induced cardiotoxicity: A review on the involvement of Nrf2/ARE signaling pathway. Phytotherapy Research. 2021;35(3):1163–75. DOI: 10.1002/ptr.6882
14. McSweeney KM, Bozza WP, Alterovitz W-L, Zhang B. Transcriptomic profiling reveals p53 as a key regulator of doxorubicin-induced cardiotoxicity. Cell Death Discovery. 2019;5(1):102. DOI: 10.1038/s41420-019-0182-6
15. Li L-L, Wei L, Zhang N, Wei W-Y, Hu C, Deng W et al. Levosimendan Protects against Doxorubicin-Induced Cardiotoxicity by Regulating the PTEN/Akt Pathway. BioMed Research International. 2020;2020:1–11. DOI: 10.1155/2020/8593617
16. Georgakopoulos P, Kyriakidis M, Perpinia A, Karavidas A, Zimeras S, Mamalis N et al. The Role of Metoprolol and Enalapril in the Prevention of Doxorubicin-induced Cardiotoxicity in Lymphoma Patients. Anticancer Research. 2019;39(10):5703–7. DOI: 10.21873/anticanres.13769
17. Boutagy NE, Feher A, Pfau D, Liu Z, Guerrera NM, Freeburg LA et al. Dual Angiotensin Receptor-Neprilysin Inhibition With Sacubitril/Valsartan Attenuates Systolic Dysfunction in Experimental Doxorubicin-Induced Cardiotoxicity. JACC: CardioOncology. 2020;2(5):774–87. DOI: 10.1016/j.jaccao.2020.09.007
18. Koulaouzidis G, Yung AE, Yung DE, Skonieczna-Żydecka K, Marlicz W, Koulaouzidis A et al. Conventional cardiac risk factors associated with trastuzumab-induced cardiotoxicity in breast cancer: Systematic review and meta-analysis. Current Problems in Cancer. 2021;45(5):100723. DOI: 10.1016/j.currproblcancer.2021.100723
19. Pecoraro M, Pinto A, Popolo A. Trastuzumab-induced cardiotoxicity and role of mitochondrial connexin43 in the adaptive response. Toxicology in Vitro. 2020;67:104926. DOI: 10.1016/j.tiv.2020.104926
20. Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D et al. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA: A Cancer Journal for Clinicians. 2016;66(4):309–25. DOI: 10.3322/caac.21341
21. Corremans R, Adão R, De Keulenaer GW, Leite-Moreira AF, Brás-Silva C. Update on pathophysiology and preventive strategies of anthracycline-induced cardiotoxicity. Clinical and Experimental Pharmacology and Physiology. 2019;46(3):204–15. DOI: 10.1111/1440-1681.13036
22. Bhagat A, Kleinerman ES. Anthracycline-Induced Cardiotoxicity: Causes, Mechanisms, and Prevention. Advances in Experimental Medicine and Biology. 2020;1257:181–92. DOI: 10.1007/978-3-030-43032-0_15
23. Skála M, Hanousková B, Skálová L, Matoušková P. MicroRNAs in the diagnosis and prevention of drug-induced cardiotoxicity. Archives of Toxicology. 2019;93(1):1–9. DOI: 10.1007/s00204-018-2356-z
24. Zhao GL, Li QJ, Lu HY. Association between NOS3 genetic variants and coronary artery disease in the Han population. Genetics and Molecular Research. 2016;15(2):gmr8044. DOI: 10.4238/gmr.15028044
25. Krajinovic M, Elbared J, Drouin S, Bertout L, Rezgui A, Ansari M et al. Polymorphisms of ABCC5 and NOS3 genes influence doxorubicin cardiotoxicity in survivors of childhood acute lymphoblastic leukemia. The Pharmacogenomics Journal. 2016;16(6):530–5. DOI: 10.1038/tpj.2015.63
26. Cascales A, Pastor-Quirante F, Sánchez-Vega B, Luengo-Gil G, Corral J, Ortuño-Pacheco G et al. Association of Anthracycline-Related Cardiac Histological Lesions With NADPH Oxidase Functional Polymorphisms. The Oncologist. 2013;18(4):446–53. DOI: 10.1634/the-oncologist.2012-0239
27. Zheikova TV, Golubenko MV, Buikin SV, Botkina OYu, Makeeva OA, Lezhnev AA et al. Glutathione peroxidase 1 (GPX1) single nucleotide polymorphism Pro198→Leu: Association with life span and coronary artery disease. Molecular Biology. 2012;46(3):433–7. DOI: 10.1134/S0026893312030144
28. Grakova EV, Shilov SN, Kopeva KV, Berezikova EN, Popova AA, Neupokoeva MN et al. Extracellular matrix remodeling in anthracy-cline-induced cardiotoxicity: What place on the pedestal? International Journal of Cardiology. 2022;350:55–61. DOI: 10.1016/j.ij-card.2022.01.013
29. Guerra LA, Lteif C, Arwood MJ, McDonough CW, Dumeny L, Desai AA et al. Genetic polymorphisms in ADRB2 and ADRB1 are associated with differential survival in heart failure patients taking β-blockers. The Pharmacogenomics Journal. 2022;22(1):62–8. DOI: 10.1038/s41397-021-00257-1
30. Pacanowski MA, Zineh I, Li H, Johnson BD, Cooper-DeHoff RM, Bittner V et al. Adrenergic gene polymorphisms and cardiovascular risk in the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation. Journal of Translational Medicine. 2008;6(1):11. DOI: 10.1186/1479-5876-6-11
31. Luzum JA, English JD, Ahmad US, Sun JW, Canan BD, Sadee W et al. Association of Genetic Polymorphisms in the Beta-1 Adrenergic Receptor with Recovery of Left Ventricular Ejection Fraction in Patients with Heart Failure. Journal of Cardiovascular Translational Research. 2019;12(4):280–9. DOI: 10.1007/s12265-019-09866-5