1. Рагино Ю. И., Кузьминых Н. А., Щербакова Л. В. и др. Распространенность ишемической болезни сердца (по эпидемиологическим критериям) и её ассоциации с липидными и нелипидными факторами риска в популяции 25-45 лет Новосибирска. Российский кардиологический журнал. 2019;24(6):78-84. doi:10.15829/1560-4071-2019-6-78-84.
2. Gilbert K, Malick M, Madingou N, et al. Metabolites derived from omega-3 polyunsaturated fatty acids are important for cardioprotection. Eur J Pharmacol. 2015;769:147-53. doi:10.1016/j.ejphar.2015.11.010.
3. Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). European Heart Journal. 2020;41:407-77. doi:10.1093/eurheartj/ehz425.
4. Dogan MV, Grumbach IM, Michaelson JJ, et al. Integrated genetic and epigenetic prediction of coronary heart disease in the Framingham Heart Study. PLoS One Res. 2018;13(1):e0190549. doi:10.1371/journal.pone.0190549.
5. Tikkanen E, Havulinna AS, Palotie А, et al. Genetic risk prediction and a 2-stage risk screening strategy for coronary heart disease. Arterioscler Thromb Vasc Biol. 2013;33(9):2261-6. doi:10.1161/ATVBAHA.112.301120.
6. Zhang B-K, Lai X, Jia S-J. Epigenetics in atherosclerosis: a clinical perspective. Discov Med. 2015;19(103):73-80.
7. Lu S, Guo S, Hu F, et al. The Associations Between the Polymorphisms of Vitamin D Receptor and Coronary Artery Disease. A Systematic Review and Meta-Analysis. Medicine. 2016;95(21)pe3467. doi:10.1097/MD.0000000000003467.
8. Jeon S-M, Shin E-A. Exploring vitamin D metabolism and function in cancer. Exp Mol Med. 2018;50(4):20. doi:10.1038/s12276-018-0038-9.
9. Hossein-Nezhad A, Spira A, Holick MF. Influence of vitamin d status and vitamin d3 supplementation on genome wide expression of white blood cells: a randomized double-blind clinical trial. PLoS ONE. 2013;8(3):e58725. doi:10.1371/journal.pone.0058725.
10. Lin L, Zhang L, Li C, et al. Vitamin D and Vitamin D Receptor: New Insights in the Treatment of Hypertension. Curr Protein Pept Sci. 2019;20(10):984-95. doi:10.2174/1389203720666190807130504
11. Mazaira GI, Zgajnar NR, Lotufo CM, et al. Nuclear Receptors: A Historical Perspective. Methods Mol Biol. 2019;1966:1-5. doi:10.1007/978-1-4939-9195-2_1.
12. Valcheva P, Cardus A, Panizo S. Lack of vitamin D receptor causes stress-induced premature senescence in vascular smooth muscle cells through enhanced local angiotensin-II signals. Atherosclerosis. 2014;235(2):247-55. doi:10.1016/j.atherosclerosis.2014.05.911.
13. Yao T, Ying X, Zhao Y, et al. Vitamin D receptor activation protects against myocardial reperfusion injury through inhibition of apoptosis and modulation of autophagy. Antioxid Redox Signal. 2015;22;8:633-50. doi:10.1089/ars.2014.5887
14. Tay HM, Yeap WH, Dalan R, et al. Increased monocyte-platelet aggregates and monocyte-endothelial adhesion in healthy individuals with vitamin D deficiency. Faser J. 2020;34(8):11133-42. doi:10.1096/fj.202000822R.
15. Martinez-Moreno JM, Herencia C, Montes de Oca A, et al. Cardiomyocyte-Specific Vitamin D modulates tissue factor and protease-activated receptor 2 expression in vascular smooth muscle cells. FASEB J. 2016;30(3):1367-76. doi:10.1096/fj.15-272872.
16. He L, Wang M. Association of vitamin d receptor-a gene polymorphisms with coronary heart disease in Han Chinese. Int J Clin Exp Med. 2015;8:6224-9.
17. Abu El, Maaty MA, Hassanein SI, Sleem HM, et al. Vitamin D receptor gene polymorphisms (TaqI and ApaI) in relation to 25-hydroxyvitamin D levels and coronary artery disease incidence. J Recept Signal Transduct Res. 2015;35:391-5. doi:10.3109/10799893.2014.959593.
18. Baker AR, McDonnell DP, Hughes M. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA. 1998;85(10):3294-8. doi:10.1073/pnas.85.10.3294.
19. Dorsch MP, Nemerovski CW, Ellingrod VL, et al. Vitamin D receptor genetics on extracellular matrix biomarkers and hemodynamics in systolic heart failure. J Cardiovasc Pharmacol Ther. 2014;19(5):439-45. doi:10.1177/1074248413517747.
20. Lin C-H, Chen K-H, Chen M-L, et al. Vitamin D receptor genetic variants and Parkinsons disease in a Taiwanese population. Neurobiol Aging. 2014;35(5):1212.e11-3. doi:10.1016/j.neurobiolaging.2013.10.094.
21. Rivera-Leon EA, Palmeros-Sanchez B, Llama-Covarrubias IM, et al. Vitamin-D receptor gene polymorphisms (TaqI and ApaI) and circulating osteocalcin in type 2 diabetic patients and healthy subjects. Endokrynol Pol. 2015;66(4):329-33. doi:10.5603/EP.2015.0042.
22. Pan XM, Li DR, Yang L, et al. No association between vitamin D receptor polymorphisms and coronary artery disease in a Chinese population. DNA Cell Biol. 2009;28(10):521-5. doi:10.1089/dna.2009.0908.
23. Shanker J, Arvind P, Maitra A, et al. Role of vitamin D levels and vitamin D receptor polymorphisms in relation to coronary artery disease: the Indian atherosclerosis research study. Coronary artery disease. 2011;22(5):324-32. doi:10.1097/MCA.0b013e3283472a57.
24. Ferrarezi DAF, Bellili-Munoz N, Dubois-Laforgue D, et al. Allelic variations of the vitamin D receptor (VDR) gene are associated with increased risk of coronary artery disease in type 2 diabetics: The DIABHYCAR prospective study. Diabetes and Metabolism. 2013;39(3):263-70. doi:10.1016/j.diabet.2012.11.004.
25. Ших Е.В., Милотова Н.М. Роль полиморфизма гена VDR, кодирующего рецептор витамина D, в патогенезе артериальной гипертензии. Биомедицина. 2009;1:55-67.
26. El-Barbary AM, Hussein MS, Rageh EM, et al. Vitamin D receptor gene polymorphism in rheumatoid arthritis and its association with atherosclerosis. Egyptian Rheumatology and Rehabilitation. 2015;42:145-52. doi:10.1016/j.atherosclerosis.2015.12.011.
27. Al-Ghamdi AS, Lyer AP, Gull M, et al. Association between vitamin D receptor gene polymorphisms and cardiovascular disease in saudi population. Indian Journal of Applied Research. 2017;7(5):601-4.
28. Morrison NA, Qi JC, Tokita A, et al. Prediction of bone density from vitamin D receptor alleles. Nature. 1994;367:284-7.
29. Швангирадзе Т.А., Бондаренко И.З., Трошина Е.А. и др. МикроРНК в диагностике сердечно-сосудистых заболеваний, ассоциированных с сахарным диабетом 2-го типа и ожирением. Терапевтический Архив. 2016;10:87-92. doi:10.17116/terarkh201688687-92.
30. Lisse TS, Adams JS, Hewison M. Vitamin D and MicroRNAs in Bone. Crit Rev Eukaryot Gene Expr. 2013;23(3):195-214. doi:10.1615/critreveukaryotgeneexpr.2013007147.
31. Prabhakar P, Majumdar V, Kulkarni GB, Christopher R. Genetic variants of vitamin D receptor and susceptibility to ischemic stroke. Biochem Biophys Res Commun. 2015;456(2):631-6. doi:10.1016/j.bbrc.2014.12.007.
32. Huang Z, Zhang Y, Li H, et al. Vitamin D promotes the cisplatin sensitivity of oral squamous cell carcinoma by inhibiting LCN2-modulated NF-kB pathway activation through RPS3. Cell Death and Disease. 2019;10(936). doi:10.1038/s41419-019-2177-x.
33. Nishiguchi T, Imanishi T, Akasaka T. MicroRNAs and cardiovascular diseases. BioMed Res Int. 2015:682857. doi:10.1155/2015/682857.
34. Ishida M, Shimabukuro M, Yagi S, et al. MicroRNA-378 regulates adiponectin expression in adipose tissue: a new plausible mechanism. PLoS One. 2014;9(11):e11537. doi:10.1371/journal.pone.0111537.
35. Hii CS, Ferrante A. The Non-Genomic Actions of Vitamin D. Nutrients. 2016;8(3):135. doi:10.3390/nu8030135.
36. Jonas MI, Kurylowicz AA, Bartoszewicz Z, et al. Vitamin D Receptor Gene Expression in Adipose Tissue of Obese Individuals Is Regulated by miRNA and Correlates With the Pro-Inflammatory Cytokine Level. Int J Mol Sci. 2019;20(21):5272. doi:10.3390/ijms20215272.
37. Zhou Q, Luo L, Wang X, Li X. Relationship between single nucleotide polymorphisms in the 3UTR of amyloid precursor protein and risk of Alzheimers disease and its mechanism. Biosci Rep. 2019;39(5):BSR20182485. doi:10.1042/BSR20182485.
38. Mohri T, Nakajima M, Takagi S. MicroRNA Regulates Human Vitamin D Receptor. Int J Cancer. 2009;125(6):1328-33. doi:10.1002/ijc.24459.