1. Morini E, Sangiuolo F, Caporossi D, et al. Application of Next Generation Sequencing for personalized medicine for sudden cardiac death. Front Genet. 2015;6:55. doi:10.3389/fgene.2015.00055.
2. Mizusawa Y. Recent advances in genetic testing and counseling for inherited arrhythmias. J Arrhythm. 2016;32(5):389-97. doi:10.1016/j.joa.2015.12.009.
3. Khera AV, Mason-Suares H, Brockman D, et al. Rare Genetic Variants Associated With Sudden Cardiac Death in Adults. J Am Coll Cardiol. 2019;74(21):2623-34. doi:10.1016/j.jacc.2019.08.1060.
4. Шляхто Е. В., Арутюнов Г. П., Беленков Ю. Н., Ардашев А. В. Национальные рекомендации по определению риска и профилактике внезапной сердечной смерти. Архивъ внутренней медицины. 2013;(4):5-15.
5. Ревишвили А. Ш., Неминущий Н. М., Баталов Р. Е. и др. Всероссийские клинические рекомендации по контролю над риском внезапной остановки сердца и внезапной сердечной смерти, профилактике и оказанию первой помощи. Вестник аритмологии. 2017;(89):2-104.
6. Faragli A, Underwood K, Priori SG, Mazzanti A. Is There a Role for Genetics in the Prevention of Sudden Cardiac Death? J Cardiovasc Electrophysiol. 2016;27(9):1124-32. doi:10.1111/jce.13028.
7. Neubauer J, Lecca MR, Russo G, et al. Exome analysis in 34 sudden unexplained death (SUD) victims mainly identified variants in channelopathy-associated genes. Int J Legal Med. 2018;132(4):1057-65. doi:10.1007/s00414-018-1775-y.
8. Loporcaro CG, Tester DJ, Maleszewski JJ, et al. Confirmation of cause and manner of death via a comprehensive cardiac autopsy including whole exome next-generation sequencing. Arch Pathol Lab Med. 2014;138(8):1083-9. doi:10.5858/arpa.2013-0479-SA.
9. Hertz CL, Christiansen SL, Ferrero-Miliani L, et al. Next-generation sequencing of 34 genes in sudden unexplained death victims in forensics and in patients with channelopathic cardiac diseases. Int J Legal Med. 2015;129(4):793-800. doi:10.1007/s00414-014-1105-y.
10. Narula N, Tester DJ, Paulmichl A, et al. Post-mortem Whole exome sequencing with genespecific analysis for autopsy-negative sudden unexplained death in the young: a case series. Pediatr Cardiol. 2015;36(4):768-78. doi:10.1007/s00246-014-1082-4.
11. Jiménez-Jáimez J, Alcalde Martínez V, Jiménez Fernández M, et al. Clinical and Genetic Diagnosis of Nonischemic Sudden Cardiac Death. Rev Esp Cardiol (Engl Ed). 2017;70(10):808-16. doi:10.1016/j.rec.2017.04.024.
12. Beauséjour Ladouceur V, Abrams DJ. Whole-Exome Molecular Autopsy After Exertional Sudden Cardiac Death: Not a Panacea but a Step in the Right Direction. Circ Cardiovasc Genet. 2016;9(3):210-2. doi:10.1161/CIRCGENETICS.116.001484.
13. Gierman HJ, Fortney K, Roach JC, et al. Whole-genome sequencing of the world’s oldest people. PLoS One. 2014;9(11):e112430. doi:10.1371/journal.pone.0112430.
14. Mates J, Mademont-Soler I, Del Olmo B, et al. Role of copy number variants in sudden cardiac death and related diseases: genetic analysis and translation into clinical practice. Eur J Hum Genet. 2018;26(7):1014-25. doi:10.1038/s41431-018-0119-1.
15. Park JK, Martin LJ, Zhang X, et al. Genetic variants in SCN5A promoter are associated with arrhythmia phenotype severity in patients with heterozygous loss-of-function mutation. Heart Rhythm. 2012;9(7):1090-6. doi:10.1016/j.hrthm.2012.02.023.
16. Hertz CL, Christiansen SL, Ferrero-Miliani L, et al. Next-generation sequencing of 100 candidate genes in young victims of suspected sudden cardiac death with structural abnormalities of the heart. Int J Legal Med. 2016;130(1):91-102. doi:10.1007/s00414-015-1261-8.
17. Lahrouchi N, Raju H, Lodder EM, et al. Utility of Post-Mortem Genetic Testing in Cases of Sudden Arrhythmic Death Syndrome. J Am Coll Cardiol. 2017;69(17):2134-45. doi:10.1016/j.jacc.2017.02.046.
18. Priori SG, Aliot E, Blømstrom-Lundqvist C, et al. The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology. Europace. 2015;17(11):1601-87. doi:10.1093/europace/euv319.
19. NGSWizard на платформе Genomenal. https://ru.genomenal.com/.
20. GNOMAD. https://gnomad.broadinstitute.org/.
21. ClinVar. https://www.ncbi.nlm.nih.gov/clinvar/.
22. Mutation Taster. http://www.mutationtaster.org/.
23. PolyPhen-2. http://genetics.bwh.harvard.edu/pph2/.
24. PROVEAN. http://provean.jcvi.org/index.php.
25. FATHMM. http://fathmm.biocompute.org.uk/.
26. LIST. http://list.msl.ubc.ca/.
27. Рыжкова О. П., Кардымон О. Л., Прохорчук Е. Б. и др. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2). Медицинская генетика. 2019;18(2):3-23. doi:10.25557/2073-7998.2019.02.3-23.
28. GeneReviews. https://www.ncbi.nlm.nih.gov/books/NBK1129/.
29. Adler A, Novelli V, Amin AS, et al. An International, Multicentered, Evidence-Based Reappraisal of Genes Reported to Cause Congenital Long QT Syndrome. Circulation. 2020;141(6):418-28. doi:10.1161/CIRCULATIONAHA.119.043132.
30. Waddell-Smith KE, Skinner JR, Bos JM. Pre-Test Probability and Genes and Variants of Uncertain Significance in Familial Long QT Syndrome. Heart Lung Circ. 2020;29(4):512-9. doi:10.1016/j.hlc.2019.12.011.
31. OMIM Online Mendelian Inheritance in Man. http://omim.org/.
32. dbSNP. https://www.ncbi.nlm.nih.gov/snp/.
33. HuGE Navigator. https://phgkb.cdc.gov/PHGKB/hNHome.action.
34. Shigemizu D, Aiba T, Nakagawa H, et al. Exome Analyses of Long QT Syndrome Reveal Candidate Pathogenic Mutations in Calmodulin-Interacting Genes. PLoS ONE. 2015;10(7):e0130329. doi:10.1371/journal.pone.0130329.
35. Генетика человека по Фогелю и Мотулски. Проблемы и подходы. Ред. Спейчер М.Р., Антонаракис С.Е., Мотулски А.Г. СПб.: Изд-во Н-Л, 2013. 1056 с. ISBN: 978-5-94869-167-1.
36. Hu RM, Tan BH, Orland KM, et al. Digenic inheritance novel mutations in SCN5a and SNTA1 increase late I(Na) contributing to LQT syndrome. Am J Physiol Heart Circ Physiol. 2013;304(7):H994-H1001. doi:10.1152/ajpheart.00705.2012.
37. Cheng J, Norstrand DW, Medeiros-Domingo A, et al. LQTS-associated mutation A257G in α1-syntrophin interacts with the intragenic variant P74L to modify its biophysical phenotype. Cardiogenetics. 2011;1(1):136. doi:10.4081/cardiogenetics.2011.e13.
38. Larsen MK, Nissen PH, Kristensen IB, et al. Sudden cardiac death in young adults: environmental risk factors and genetic aspects of premature atherosclerosis. J Forensic Sci. 2012;57(3):658-62. doi:10.1111/j.1556-4029.2011.02028.x.
39. Barbitoff YA, Skitchenko RK, Poleshchuk OI, et al. Whole-exome sequencing provides insights into monogenic disease prevalence in Northwest Russia. Mol Genet Genomic Med. 2019;7(11):e964. doi:10.1002/mgg3.964.
40. Gotway G, Crossley E, Kozlitina J, et al. Clinical Exome Studies Have Inconsistent Coverage. Clinical Chemistry. 2020;66(1):199-206. doi:10.1093/clinchem.2019.306795.
41. Taliun D, Harris DN, Kessler MD, et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. BioRxiv. 2019. 563866. doi:10.1101/563866.
42. Zaragoza MV, Fung L, Jensen E, et al. Exome Sequencing Identifies a Novel LMNA Splice-Site Mutation and Multigenic Heterozygosity of Potential Modifiers in a Family with Sick Sinus Syndrome, Dilated Cardiomyopathy, and Sudden Cardiac Death. PLoS One. 2016;11(5):e0155421. doi:10.1371/journal.pone.0155421.