1. Lind L, Skarfors E, Berglund L, et al. Serum calcium: a new, independent, prospective risk factor for myocardial infarction in middle-aged men followed for 18 years. J Clin Epidemiol. 1997;50(8):967-73. doi:10.1016/S0895-4356(97)00104-2.
2. Foley RN, Collins AJ, Ishani A, et al. Calcium-phosphate levels and cardiovascular disease in community-dwelling adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J. 2008;156(3):556-63. doi:10.1016/j.ahj.2008.05.016.
3. Larsson TE, Olauson H, Hagström E, et al. Conjoint effects of serum calcium and phosphate on risk of total, cardiovascular, and noncardiovascular mortality in the community. Arterioscler Thromb Vasc Biol. 2010;30(2):333-9. doi:10.1161/ATVBAHA.109.196675.
4. Danesh J, Collins R, Appleby P, et al. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA 1998;279(18):1477-82. doi:10.1001/jama.279.18.1477.
5. Sun ZL, Xie QY, Guo GL, et al. Serum fetuin-A levels in patients with cardiovascular disease: a meta-analysis. Biomed Res Int. 2014;2014:691540. doi:10.1155/2014/691540.
6. Kutikhin AG, Velikanova EA, Mukhamadiyarov RA, et al. Apoptosis-mediated endothelial toxicity but not direct calcification or functional changes in anti-calcification proteins defines pathogenic effects of calcium phosphate bions. Sci Rep. 2016;6:27255. doi:10.1038/srep27255.
7. Wu CY, Young L, Young D, et al. Bions: a family of biomimetic mineralo-organic complexes derived from biological fluids. PLoS One. 2013;8(9):e75501. doi:10.1371/journal.pone.0075501.
8. Sin’kov MA, Filip’ev DE, Sevost’yanova VV, et al. Experimental model of rat aorta angioplasty with a paclitaxel releasing balloon catheter. Bull Exp Biol Med. 2013;156(9):392-5.
9. Guide for the Care and Use of Laboratory Animals, 8th edition. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Washington (DC): National Academies Press (US); 2011. doi:10.17226/12910.
10. Aghagolzadeh P, Bachtler M, Bijarnia R, et al. Calcification of vascular smooth muscle cells is induced by secondary calciprotein particles and enhanced by tumor necrosis factor-α. Atherosclerosis. 2016;251:404-14. doi:10.1016/j.atherosclerosis.2016.05.044.
11. Smith ER, Hanssen E, McMahon LP, et al. Fetuin-A-containing calciprotein particles reduce mineral stress in the macrophage. PLoS One. 2013;8(4):e60904. doi:10.1371/journal.pone.0060904.
12. Peng HH, Wu CY, Young D, et al. Physicochemical and biological properties of biomimetic mineralo-protein nanoparticles formed spontaneously in biological fluids. Small. 2013;9(13):2297-307. doi:10.1002/smll.201202270.
13. Escolar E, Lamas GA, Mark DB, et al. The effect of an EDTA-based chelation regimen on patients with diabetes mellitus and prior myocardial infarction in the Trial to Assess Chelation Therapy (TACT). Circ Cardiovasc Qual Outcomes. 2014;7(1):15-24. doi:10.1161/CIRCOUTCOMES.113.000663.
14. Peguero JG, Arenas I, Lamas GA. Chelation therapy and cardiovascular disease: connecting scientific silos to benefit cardiac patients. Trends Cardiovasc Med. 2014;24(6):232-40. doi:10.1016/j.tcm.2014.06.002.
15. Cahill PA, Redmond EM. Vascular endothelium — Gatekeeper of vessel health. Atherosclerosis. 2016;248:97-109. doi:10.1016/j.atherosclerosis.2016.03.007.
16. Jensen HA, Mehta JL. Endothelial cell dysfunction as a novel therapeutic target in atherosclerosis. Expert Rev Cardiovasc Ther. 2016;14(9):1021-33. doi:10.1080/14779072.2016.1207527.
17. Gimbrone MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118(4):620-36. doi:10.1161/CIRCRESAHA.115.306301.
18. Yurdagul A, Finney AC, Woolard MD, et al. The arterial microenvironment: the where and why of atherosclerosis. Biochem J. 2016;473(10):1281-95. doi:10.1042/BJ20150844.
19. Hansson GK, Libby P. The immune response in atherosclerosis: a doubleedged sword. Nat Rev Immunol. 2006;6:508-19. doi:10.1038/nri1882.
20. Xu J, Shi GP. Vascular wall extracellular matrix proteins and vascular diseases. Biochim Biophys Acta 2014;1842(11):2106-19. doi:10.1016/j.bbadis.2014.07.008.
21. Hristov M, Erl W, Linder S, et al. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 2004;104(9):2761-6. doi:10.1182/blood-2003-10-3614.
22. Schmidt-Lucke C, Rössig L, Fichtlscherer S, et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 2005;111(22):2981-7. doi:10.1161/CIRCULATIONAHA.104.504340.
23. Banerjee S, Brilakis E, Zhang S, et al. Endothelial progenitor cell mobilization after percutaneous coronary intervention. Atherosclerosis. 2006;189(1):70-5. doi:10.1016/j.atherosclerosis.2006.04.026.
24. Zhao J, Mitrofan CG, Appleby SL, et al. Disrupted endothelial cell layer and exposed extracellular matrix proteins promote capture of late outgrowth endothelial progenitor cells. Stem Cells Int. 2016; 2016:1406304. doi:10.1155/2016/1406304.
25. Hagensen MK, Shim J, Falk E, et al. Flanking recipient vasculature, not circulating progenitor cells, contributes to endothelium and smooth muscle in murine allograft vasculopathy. Аrterioscler Thromb Vasc Biol. 2011;31:808-13. doi:10.1161/ATVBAHA.110.221184.
26. Hagensen MK, Raarup MK, Mortensen MB, et al. Circulating endothelial progenitor cells do not contribute to regeneration of endothelium after murine arterial injury. Cardiovasc Res. 2012;93(2):211-2. doi:10.1093/cvr/cvr342.
27. Moss JW, Ramji DP. Cytokines: roles in atherosclerosis disease progression and potential therapeutic targets. Future Med Chem. 2016;8(11):1317-30. doi:10.4155/fmc-20160072.
28. Ramji DP, Davies TS. Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets. Cytokine Growth Factor Rev. 2015;26(6):673-85. doi:10.1016/j.cytogfr.2015.04.003.
29. Pruijm M, Lu Y, Megdiche F, et al. Serum calcification propensity is associated with renal tissue oxygenation and resistive index in patients with arterial hypertension or chronic kidney disease. J Hypertens. 2017;35(10):2044-52. doi:10.1097/HJH.0000000000001406.
30. Smith ER, Ford ML, Tomlinson LA, et al. Serum calcification propensity predicts allcause mortality in predialysis CKD. J Am Soc Nephrol. 2014;25(2):339-48. doi:10.1681/ASN.2013060635.
31. Pasch A, Block GA, Bachtler M, et al. Blood Calcification Propensity, Cardiovascular Events, and Survival in Patients Receiving Hemodialysis in the EVOLVE Trial. Clin J Am Soc Nephrol. 2017;12(2):315-22. doi:10.2215/CJN.04720416.
32. Keyzer CA, de Borst MH, van den Berg E, et al. Calcification Propensity and Survival among Renal Transplant Recipients. J Am Soc Nephrol. 2016;27(1):239-48. doi:10.1681/ASN.2014070670.
33. Dahle DO, Åsberg A, Hartmann A, et al. Serum Calcification Propensity Is a Strong and Independent Determinant of Cardiac and All-Cause Mortality in Kidney Transplant Recipients. Am J Transplant. 2016;16(1):204-12. doi:10.1111/ajt.13443.