1. Чазов Е.И., Беленков Ю.Н. Рациональная фармакотерапия сердечно-сосудистых заболеваний. М.: Литтерра. 2006.
2. Ederhy S, Cohen A. Optimising stroke prevention in non-valvular atrial fibrillation. Expert Opin Pharmacother. 2006;7(15):2079-94.
3. Gorter JW. Major bleeding during anticoagulation after cerebral ischemia: patterns and risk factors. Stroke Prevention In Reversible Ischemia Trial (SPIRIT). European Atrial Fibrillation Trial (EAFT) study groups. Neurology. 1999;53(6):1319-27.
4. Atrial Fibrillation Clopidogrel Trial with Irbesartan for Prevention of Vascular Events Am Heart J. 2006;151 (6):1187-93.
5. Cannegieter SC, van der Meer FJ, Briet E, Rosendaal FR. Warfarin and aspirin after heart-valve replacement. N Engl J Med. 1994;330(7): 507-8.
6. Баркаган З.С., Момот А.П., Тараненко И.А., Шойхет Я.Н. Основы пролонгированной профилактики и терапии тромбоэмболий антикоагулянтами непрямого действия (показания, подбор доз, лабораторный мониторинг). Методические указания. М. 2004.
7. Макацария А.Д., Бицадзе В.О. Тромбофилии и противотромботическая терапия в акушерской практике. М.: Триада-Х. 2003.
8. Copland M, Walker ID, Tait RC. Oral anticoagulation and hemorrhagic complications in an elderly population with atrial fibrillation. Arch Intern Med. 2001; 161(17):2125-8.
9. Кропачева Е.С., Панченко Е.П. Сравнение эффективности и безопасности длительной терапии варфарином и аценокумаролом у больных с мерцательной аритмией. Клиническая медицина 2005;(1):24-7.
10. Сычев Д.А., Кропачева Е.С., Игнатьев И.В. и др. Фармакогенетика непрямых антикоагулянтов: значение генотипа в повышении эффективности и безопасности терапии. Кардиология 2006;(7):72-8.
11. Кукес В.Г. Метаболизм лекарственных средств: клинико-фармакологические аспекты. М.: Реафарм. 2004.
12. Taube J, Halsall D, Baglin T. Influence of cytochrome P-450 CYP2C9 polymorphisms on warfarin sensitivity and risk of over-anticoagulation in patients on long-term treatment. Blood. 2000;96(5):1816-9.
13. Yin Т, Miyata Т. Warfarin dose and the pharmacogenomics of CYP2C9 and VKORC1 — Rationale and perspectives. Thromb Res. 2006;102(4):1345-9.
14. Сироткина О.В., Улитина А.С., Тараскина А.Е. и др. Аллельные варианты CYP2C9*2 и CYP2C9*3 гена цитохрома CYP2C9 в популяции Санкт- Петербурга и их клиническое значение при антикоагулянтной терапии варфарином. Росс кардиол журн 2004;(6):24-31.
15. Сычев Д. А. Значение фармакогенетических исследований системы биотрансформации и транспортеров для оптимизации фармакотерапии сердечно-сосудистыми лекарственными средствами (фармакокинетические, клинические и этнические аспекты). Автореф. … докт. мед. наук. М., 2006.
16. Кондратьева Л.В. Применение оральных антикоагулянтов и антиагрегантов в терапии антифосфолипидного синдрома. Автореф. … канд. мед. наук. М., 2006.
17. Меграбян М.Ф. Тромботические осложнения при системной красной волчанке у детей: клиника, лечение и профилактика. Автореф. … канд. мед. наук. М., 2006.
18. Moridani M, Fu L, Selby R et al. Frequency of CYP2C9 polymorphisms affecting warfarin metabolism in a large anticoagulant clinic cohort. Clin Biochem. 2006;39(6):606-12.
19. Gage ВF. Pharmacogenetics-Based Coumarin Therapy. Hematology Am Soc Hematol Educ Program. 2006;37(5):467-73.
20. You JH, Chan FW, Wong RS, Cheng G. The potential clinical and economic outcomes of pharmacogenetics-oriented management of warfarin therapy - a decision analysis. Thromb Haemost. 2004;92(3):590-7.
21. Gage BF, Eby CS. Pharmacogenetics and anticoagulant therapy. J Thromb Thrombolysis. 2003;16(1-2):73-8.
22. Sconce EA, Khan TI, Wynne HA et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood. 2005;106:2329-2333
23. Tham LS, Goh BC, Nafziger A. et al. A warfarin-dosing model in Asians that uses single-nucleotide polymorphisms in vitamin K epoxide reductase complex and cytochrome P450 2C9 Clin Pharmacol Ther. 2006;80(4):346-55.
24. Wadelius M, Chen LY, Downes K et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics. 2005;5:262- 70.
25. Giacomini KM, Brett CM, Altman RB et al. The pharmacogenetics research network: from SNP discovery to clinical drug response. Clin Pharmacol Ther. 2007;81(3):328-45.
26. Peyvandi F, Spreafico M, Siboni SM et al. CYP2C9 genotypes and dose requirements during the induction phase of oral anticoagulant therapy. Clin Pharmacol Ther. 2004;75(3):198-203.
27. Moridani M, Fu L, Selby R, Yun F et al. Frequency of CYP2C9 polymorphisms affecting warfarin metabolism in a large anticoagulant clinic cohort. Clin Biochem. 2006;39(6):606-12.
28. Takahashi H, Wilkinson GR, Nutescu EA et al. Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genomics. 2006;16(2):101-10.
29. Hillman MA, Wilke RA, Yale SH et al. A prospective, randomized pilot trial of model-based warfarin dose initiation using CYP2C9 genotype and clinical data. Clin Med Res. 2005;3(3):137-45.
30. Sullivan PW, Arant TW, Ellis SL, Ulrich H. The cost effectiveness of anticoagulation management services for patients with atrial fibrillation and at high risk of stroke in the US. Pharmacoeconomics. 2006;24(10):1021-33.
31. Sanderson S, Emery J, Higgins J. CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and metaanalysis. Genet Med. 2005;7(2):97-104.
32. Gulseth MP. Ximelagatran: an orally active direct thrombin inhibitor. Am J Health Syst Pharm. 2005;62(14):1451-67.
33. Приказ Минздрава РФ от 22 октября 2003 г. N 494 "О совершенствовании деятельности врачей - клинических фармакологов". www.pharmvestnik.ru/issues/0320/documents/0320_17.html