1. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63(3):364–374.
2. Liu F, Li L, Xu M, Wu J, Luo D, Zhu Y et al. Prognostic value of interleukin-6, Creactive protein, and procalcitonin in patients with COVID-19. J Clin Virol 2020;127:104370.
3. Dandona P, Dhindsa S, Ghanim H, Chaudhuri A. Angiotensin II and inflammation: the effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J Hum Hypertens. 2007;21(1):20–27.
4. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4): e21.
5. Ayres JS. A metabolic handbook for the COVID-19 pandemic. Nat Metab. 2020;2(7):572–585. doi:10.1038/s42255-020-0237-2.
6. Zhu L, She ZG, Cheng X, Qin JJ, Zhang XJ, Cai J et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020:31(6);1068–1077.e3.
7. Minz MM, Bansal M, Ravi R. Kasliwal RR. Statins and SARS-CoV-2 disease: Current concepts and possible benefits. Diabetes Metab Syndr. 2020;14(6):2063–2067. doi:10.1016/j.dsx.2020.10.021.
8. Jurewicz M, McDermott DH, Sechler JM, Tinckam K, Takakura A, Carpenter CB et al. Human T and natural killer cells possess a functional renin-angiotensin system: further mechanisms of angiotensin II-induced inflammation. J Am Soc Nephrol. 2007;18(4):1093–1102.
9. Hoch N, Guzik T, Chen W, Deans T, Maalouf SA, Gratze P et al. Regulation of T-cell function by endogenously produced angiotensin II. Am J Physiol Regul Integr Comp Physiol. 2009;296(2):R208-R216.
10. Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clin Infect Dis. 2020;71(15):769–777.
11. Nemcsik J, Cseprekál O, Tislér A. Measurement of arterial stiffness: A novel tool of risk stratification in hypertension. Adv Exp Med Biol. 2017;956:475–488.
12. Chen X, Huang B, Liu M, Li X. Effects of different types of antihypertensive agents on arterial stiffness: a systematic review and meta-analysis of randomized controlled trials. J Thorac Dis. 2015;7(12):2339–2347.
13. Morgan T, Lauri J, Bertram D, Anderson A. Effect of different antihypertensive drug classes on central aortic pressure. Am J Hypertens. 2004;17(2):118–123.
14. Mackenzie IS, McEniery CM, Dhakam Z, Brown MJ, Cockcroft JR, Wilkinson IB. Comparison of the effects of antihypertensive agents on central blood pressure and arterial stiffness in isolated systolic hypertension. Hypertension. 2009;54(2):409–413.
15. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113(9):1213–1225.
16. Boutouyrie P, Achouba A, Trunet P, Laurent S. Amlodipinevalsartan combination decreases central systolic blood pressure more effectively than the amlodipine-atenolol combination: the EXPLOR study. Hypertension. 2010;55(6):1314–1322.
17. Matsui Y, Eguchi K, O’Rourke MF, Ishikawa J, Shimada K, Kario K. Association between aldosterone induced by antihypertensive medication and arterial stiffness reduction: the J-CORE Study. Atherosclerosis. 2011;215(1):184–188.
18. Dahlof B, Sever PS, Poulter NR, Wedel H, Beevers DG, Caulfield M et al. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes, Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomized controlled trial. Lancet. 2005;366(9489):895–906.
19. Manisty CH, Zambanini A, Parker KH, Davies JE, Francis DP, Mayet J et al. Differences in the magnitude ofwave reflection account for differential effects of amlodipine- versus atenolol-based regimens on central blood pressure: an Anglo-Scandinavian Cardiac Outcome Trial substudy. Hypertension. 2009;54(4):724–730.
20. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37(5):1236–1241.
21. Roberts ER, Green D, Kadam UT. Chronic condition comorbidity and multidrug therapy in general practice populations: a cross-sectional linkage study. BMJ Open. 2014;4(7):e005429.
22. Карпов Ю.А., Сорокин Е. В. Влияние комбинированной гипотензивной терапии на риск сердечно-сосудистых осложнений и сосудистый возраст: результаты многоцентрового открытого исследования ADVANT’AGE. Атмосфера. Новости кардиологии.
23. Bruno CM, Spronck B, Hametner B, Hughes A, Lacolley P, Mayer Ch et al. on behalf of the ARTERY Society. COVID-19 Effects on ARTErial stIffness and vascular AgeiNg: CARTESIAN Study Rationale and Protocol. Art Res. 2021;27(2):59–68. doi:10.2991/artres.k.201124.001
24. Kumar S, Kumar N, Kumar A et al. The COSEVAST Study: Unravelling the role of arterial stiffness in COVID-19 disease severity. Singh medRxiv. 2020;12(18):20248317. doi:10.1101/2020.12.18.20248317
25. Недогода С.В. Скорость распространения пульсовой волны как фактор риска развития сердечно-сосудистых осложнений и мишень для фармакотерапии. Фарматека. 2010;8(2):18–26.
26. Al-Majed AA, Bakheit AHH, Al-Muhsin A, Al-Kahtani HM, Abdelhameed AS. Azilsartan medoxomil. Profiles Drug Subst Excip Relat Methodol. 2020;45:1–39.
27. Arumugam S, Sreedhar R, Thandavarayan RA, Karuppagounder V, Krishnamurthy P, Suzuki K et al. Angiotensin receptor blockers: Focus on cardiac and renal injury. Trends Cardiovasc Med. 2016;26(3):221–228.
28. Sakamoto M, Asakura M, Nakano A, Kanzaki H, Sugano Y, Amaki M et al. Azilsartan, but not candesartan improves left ventricular diastolic function in patients with hypertension and heart failure. Int J Gerontol. 2015;9:201–205.
29. Kusuyama T, Ogata H, Takeshita H, Kohno H, Shimodozono S, Iida H et al. Effects of azilsartan compared to other angiotensin receptor blockers on left ventricular hypertrophy and the sympathetic nervous system in hemodialysis patients. Ther Apher Dial. 2014;18(5):398–403.
30. Pradhan A, Tiwari A, Sethi R. Azilsartan: current evidence and perspectives in management of hypertension. Int J Hypertens. 2019;2019:1824621.
31. Lei J, He M, Xu L, He C, Li J, Wang W. Azilsartan prevented AGE-induced inflammatory response and degradation of aggrecan in human chondrocytes through inhibition of Sox4. J Biochem Mol Toxicol. 2021;35(8):e22827.
32. Liu H, Mao P, Wang J, Wang T, Xie CH. Azilsartan, an angiotensin II type 1 receptor blocker, attenuates tert-butyl hydroperoxide-induced endothelial cell injury through inhibition of mitochondrial dysfunction and anti-inflammatory activity. Neurochem Int. 2016;94:48–56.
33. Gupta V, Dhull DK, Joshi J, Kaur S, Kumar A. Neuroprotective potential of azilsartan against cerebral ischemic injury: Possible involvement of mitochondrial mechanisms. Neurochem Int. 2020;132:104604.
34. Ok F, Erdogan O, Durmus E, Carkci S, Canik A. Predictive values of blood urea nitrogen/creatinine ratio and other routine blood parameters on disease severity and survival of COVID-19 patients. J Med Virol. 2021;93(2):786–793.
35. Ye B, Deng H, Zhao H, Liang J, Ke L, Li W. Association between an increase in blood urea nitrogen at 24 h and worse outcomes in COVID-19 pneumonia. Ren Fail. 2021;43(1):347–350.
36. Xiang J et al. Potential biochemical markers to identify severe cases among COVID-19 patients. MedRxiv. 2020.