Статья
Резистентная артериальная гипертензия: поиск новых подходов к антигипертензивной медикаментозной терапии
Повышение эффективности лекарственной терапии и снижение риска развития неблагоприятных сердечно-сосудистых и почечных исходов у пациентов с резистентной артериальной гипертензией (АГ) остается нерешенной проблемой кардиологии. Результаты исследований PATHWAY-2, PATHWAY-3 и ReHOT показали клиническую эффективность спиронолактона, амилорида и, в меньшей степени, антиадренергических препаратов клонидина, бисопролола и доксазозина в улучшении контроля артериального давления (АД) в этой популяции больных. Однако включение в антигипертензивную терапию спиронолактона и других исследованных лекарственных средств не обеспечивает достижения целевого уровня АД у значительной части таких пациентов. В обзоре представлены результаты клинических исследований, посвященных поиску новых подходов к повышению эффективности медикаментозной терапии больных с резистентной АГ с использованием ингибиторов натрий-глюкозного котранспортера 2-го типа, ингибиторов аминопептидазы А головного мозга и новых антагонистов рецепторов эндотелина.
1. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callen der T, Emberson J et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387(10022):957–967. doi:10.1016/S0140-6736(15)01225-8
2. Brunstrem M, Carlberg B. Association of blood pressure lowering with mortality and cardiovascular disease across blood pressure levels: a systematic review and meta-analysis. JAMA Int Med. 2018;178(1):28–36. doi:10.1001/jamainternmed.2017.6015
3. Carey RM, Calhoun DA, Bakris GL, Brook RD, Daugherty SL, Dennison-Himmelfarb CR et al. Resistant hypertension: detection, evaluation, and management: a scientific statement from the American Heart Association. Hypertension. 2018;72(5):e53– e90. doi:10.1161/HYP.0000000000000084
4. Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, MacInnes G et al. Spironolactone versus placebo, bisoprolol, and doxazozin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomized, double-blind, crossover trial. Lancet. 2015;386(10008):2059–2068. doi:10.1016/S0140-6736(15)00257-3
5. Brown MJ, Williams B, Morant SV, Webb DJ, Caulfield MJ, Cruickshank JK et al. Effect of amiloride, or amiloride plus hydrochlorothiazide, versus hydrochlorothiazide on glucose tolerance and blood pressure (PATHWAY-3): a parallel group, double-blind, randomized phase 4 trial. Lancet. Diab Endocrinol. 2016;4(2):136–147. doi:10.1016/S2213-8587(15)00377-0
6. Krieger EM, Drager LF, Giorgi DM, Pereira AC, Barreto-Filho JA, Nogueira AR et al. Spironolactone versus clonidine as a fourth-drug therapy for resistant hypertension: the ReHOT randomized study (Resistant Hypertension Optimal Treatment). Hypertension. 2018;71(4):681–690. doi:10.1161/HYPERTENSIONAHA.117.10662
7. Williams B, MacDonald TM, Morant SV, Webb DJ, Sever P, McInnes GT et al. Endocrine and haemodynamics changes in resistant hypertension and blood pressure responses to spironolactone or amiloride: the PATHWAY-2 mechanisms substudies. Lancet. Diab Endocrinol. 2018;6(6):464–475. doi:10.1016/S2213-8587(18)30071-8
8. Gaddam KK, Nishizaka MK, Pratt-Ubunama MN, Pimenta E, Aban I, Oparil S et al. Characterization of resistant hypertension: association between resistant hypertension, aldosterone, and persistent intravascular volume expansion. Arch Int Med. 2008;168(11):1159–1164. doi:10.1001/archinte.168.11.1159
9. Hall JE. Kidney dysfunction mediates salt-induced increases in blood pressure. Circulation. 2016;133(9):894–906. doi:10.1161/CIRCULATIONAHA.115.018526
10. Кузьмин О. Б., Пугаева М. О., Бучнева Н. В. Почечные механизмы нефрогенной артериальной гипертонии. Нефрология. 2008;12(2):39–45.
11. Graham LA, Domoniczak AF, Ferreri NR. Role of renal transporters and novel regulatory interactions in the TAL that control blood pressure. Physiological Genomics. 2017;49(5):261–276. doi:10.1152/physiolgenomics.00017.2017
12. Pavlov TC, Staruschenko A. Involvement of ENaC in the development of salt-sensitive hypertension. American Journal of Physiology. Renal Physiology. 2017;313(2):F135–F140. doi:10.1152/ajprenal.00427.2016
13. Grassi G, Bombelli M, Buzzi S, Volpe M, Brambilla G. Neurogenic disarray in pseudo-resistant and resistant hyper tension. Hypertens Res. 2014;37(6):479–483. doi:10.1038/hr.2014.25
14. Eikelis N, Marques FZ, Hering D, Marusic P, Head GA, Walton AS et al. A polymorphism in the noradrenaline transporter gene is associated with increased blood pressure in patients with resistant hypertension. J Hypertens. 2018;36(7):1571–1577. doi:10.1097/HJH.00000000000001736
15. Judd EK, Calhoun DA, Warnock DG. Pathophysiology and treatment of resistant hypertension: the role of aldosterone and amiloride-sensitive sodium channels. Seminars Nephrology. 2014;34(5):532–539. doi:10.1016/semnephrol.2014.08.007
16. Calhoun DA. Fluid retention, aldosterone excess, and treatment of resistant hypertension. Lancet. Diab Endocrinol. 2018;6(6):431–433. doi:10.1016/S2213-8587(18)30080-9
17. Mu S, Shimosawa T, Ogura S, Wang H, Uetake Y, Kawakami-Mori F et al. Epigenetic modulation of the renal β-adrenergic-WNK 4 pathway in salt-sensitive hypertension. Nature Medicine. 2011;17(5):573–580. doi:10.1038/nm.2337
18. Walsh KR, Kuwabary JT, Shim JW, Wainford RD. Norepinephrine-evoked salt-sensitive hypertension requires impaired renal sodium chloride cotransporter in Sprage-Dawly rats. Am J Physiol. Regulatory, Integrative Comparative Physiology. 2016;310(2): R 115–R 124. doi:10.1152/ajpregu.00514.2014
19. Кузьмин О. Б., Бучнева Н. В., Жежа В. В., Сердюк С. В. Неконтролируемая артериальная гипертензия: почка, нейрогормональный дисбаланс и подходы к антигипертензивной терапии. Кардиология. 2019;59(12):64–71. doi:10.18087/cardio.2019.12.n.547
20. American Diabetes Association. Pharmacological approaches to glycemic treatment: standards of medical care in diabetes-2019. Diabetes Care. 2019;41(Suppl. 1): S 90–S102. doi:10.2337/dс19-S009
21. Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs. 2015;75(1):33–59. doi:10.1007/s40265-014-0337-y
22. Eickhoff MK, Dekkers CCJ, Kramers BJ, Laverman GD, Frimont-Moller M, Jorgensen NR et al. Effect of dapagliflozin on volume status when added to renin-angiotensin system inhibitors. J Clin Med. 2019;8(6): E 779. doi:10.3390/jcm8060779
23. Baker WL, Smyth LR, Riche DM, Bourret EM, Chamberlin KW, White WB. Effects of sodium-glucose cotransporter type 2 inhibitors on blood pressure: a systematic review and meta-analysis. J Am Soc Hypertens. 2014;8(4):262–275. doi:10.1016/j.jash.2014.01.007
24. Baker WL, Buckley LF, Kelly MS, Bucheit JD, Parod ED, Brown R et al. Effects of sodium-glucose cotransporter type 2 inhibitors on 24-hour ambulatory blood pressure: a systematic review and meta-analysis. J Am Heart Associat. 2017;6(5):e005686. doi:10.1161/JAHA.117.005686
25. Cherney DZI, Cooper ME, Tikkanen I, Pfarr E, Johansen OE, Woerle HJ et al. Pooled analysis of phase III trials indicate contrasting influences of renal function on blood pressure, body weight, and HbAIc reduction with empagliflozin. Kidney International. 2018;93(1):231–244. doi:10.1016/j.kint.2017.06.017
26. Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie L, Leslie B, List J. Dapagliflozin, a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diab Obes Metabol. 2013;15(9):853–862. doi:10.1111/dom.12127
27. Sha S, Polidori D, Heise T, Natarajan J, Farrel K, Wang SS et al. Effect of sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus. Diab Obes Metabol. 2014;16(11):1087–1095. doi:10.1111/dom.12322
28. Kawasoe S, Maruguchi Y, Kajiya S, Uenomachi H, Miyata M, Kawasoe M et al. Mechanism of the blood pressure lowering effect of sodium glucose co-transporter 2 inhibitors in obese patients with type 2 diabetes. BMC Pharmacol Toxicol. 2017;18(1):23. doi:10.1186/s40360-017-0125-x
29. Wilcox CS, Shen W, Boulton DW, Shirley DW, Leslie BR, Griffen SC. Interaction between the sodium-glucose-linked transporter 2 inhibitor dapagliflozin and the loop diuretic bumeta nide in normal human subjects. J Am Heart Associat. 2018;7(4): e007046. doi:10.1161/JAMA.117.007046
30. Ohara K, Masuda T, Murakami T, Imai T, Yoshisawa H, Nakagawa S et al. Effect of the SGLT2 inhibitor dapagliflozin on fluid distribution: a comparison study with furosemide and tolvaptan. Nephrology (Carlton). 2019;(9):904–911. doi:10.1111/nep.13552
31. Weeda ER, Cassarly C, Brinton DL, Shirley DW, Simpson KN. Loop diuretic use among patients with heart failure and type 2 diabetes treated with sodium-glucose cotransporter 2 inhibitors. J Diab Complications. 2019;33(8):567–71. doi:10.1016/j.jdiacomp. 2019.05.001
32. Kiuchi S, Hisatake S, Kabuki T, Fujii T, Oka T, Dobashi S et al. Long-term use of ipragliflozin improved cardiac sympathetic nerve activity in patients with a heart failure: a case report. Drug Discoveries Therapeutics. 2018;12(1):51–54. doi:10.5582/ddt.2017.01069
33. Herat LY, Magno AL, Rudnicka S, Hricova JH, Carnagarin R, Ward NC et al. SGLT2 inhibitor-induced sympathoinhibition: a novel mechanism for cardiorenal protection. JACC. Basic Translation Science. 2020;5(2):169–179. doi:10.1016/j.jacbts.2019.11.007
34. Scheen AJ. Effect of SGLT2 inhibitors on the sympathetic nervous system and blood pressure. Current Cardiol Reports. 2019;21(8):70. doi:10.1007/s11886-019-1165-1
35. Naznin F, Sakoda H, Okada T, Tsubouchi Y, Zaved Waise TM, Arakawa A et al. Canagliflozin, a sodium glucose cotransporter 2 inhibitor, attenuates obesity-induced inflamma tion in nodose ganglion, hypothalamus, and skeletal muscle of mice. Eur J Pharmacol. 2017;794:37–44. doi:10.1016/j.ejphar.2016.11.028
36. Ferreira JH, Fitchett D, Ofstad AP, Kraus BJ, Wanner C, Zwiener I et al. Empagliflozin for patients with presumed resistant hypertension: a post hoc analysis of the EMPA-REG OUTCOME trial. Am J Hypertens. 2020;33(12):1092–1101. doi:10.1093/ajh/hpaa073
37. Marc Y, Iturrioz X, Leroux V, Balavoine F, Llorens-Cortes C. A new strategy for treating hypertension by blocking the activity of the brain renin-angiotensin system with aminopeptidase A inhibitors. Clinical Science (London). 2014;127(3):135–148. doi:10.1042/CS20130396
38. Nakagawa P, Gomez J, Grobe JL, Sigmund CD. The renin-angiotensin system in the central nervous system and its role in blood pressure regulation. Curr Hypertens Rep. 2020;22(1):7. doi:10.1007/s11906-019-1011-2
39. Marc Y, Gao J, Balavoine F, Michaud A, Roques BP, Llorens-Cortes C. Central antihypertensive effects of orally active aminopeptidase A inhibitors in spontaneously hypertensive rats. Hypertension. 2012;60(2):411–418. doi:10.1161/HYPERTENSIONAHA.112.190942
40. Marc Y, Hmazzou R, Balavoine F, Flahault A, Llorens-Cortes C. Central antihypertensive effects of chronic treatment with RB 150: an orally active aminopeptidase A inhibitor in desoxycorticosterone-acetate-salt rats. J Hypertens. 2018;36(3):641– 650. doi:10.1097/HJH.0000000000001563
41. Ferdinand KC, Balavoine F, Besse B, Black HR, Desbarndes S, Dittrich HC et al. Efficacy and safety of firibastat, a first-inclass brain aminopeptidase A inhibitor, in hypertensive overweight patients of multiple ethnic origins. Circulation. 2019;140(2):138– 146. doi:10.1161/CIRCULATIONAHA.119.040070
42. Firibastat in treatment-resistant hypertension (FRESH). ClinicalTrials.gov. NCT04277884
43. Davenport AP, Hydman KA, Dhaun N, Southan C, Kohan DE, Pollock JS et al. Endothelin. Pharmacological Reviews. 2016; 68(2):357–418. doi:10.1124/pr.115.011833
44. Dhaun N, Webb DJ. Endothelins in cardiovascular biology and therapeutics. Nat Rev Cardiol. 2019;16(8):491–502. doi:10.1038/s41569-019-0176-3
45. Yuan W, Cheng G, Li B, Li Y, Lu S, Liu D et al. Endothelinreceptor antagonist can reduce blood pressure in patients with hypertension: a meta-analysis. Blood Press. 2017;26(3):139–149. doi:10.1080/08037051.2016.1208730
46. Wei A, Gu Z, Li J, Liu X, Wu X, Han Y et al. Clinical adverse effect of endothelin receptor antagonists: insight from the meta-analysis of 4894 patients from 24 randomized double-blind placebo-controlled clinical trials. J Am Heart Assoc. 2016;5(11): e003896. doi:10.1161/JAHA.116.003896
47. Burnier M. Update on endothelin receptor antagonist in hypertension. Curr Hypertens Rep. 2018;20(6):51. doi:10.1007/s11906-018-0848-0
48. Verweij P, Danaietash P, Flamion B, Menard J, Bellet M. Randomized dose-response study of new dual endothelin receptor antagonist aprocitentan in hypertension. Hypertension. 2020;75(4):956–965. doi:10.1161/HYPERTENSIONAHA.119.14504
49. A research study to show the effect of aprocitentan in the treatment of difficult to control (resistant) high blood pressure (hypertension) and find out more about its safety. ClinicalTrials. gov. NCT03541174