1. WHO Statistical report "World Health Statistics", 2014.
2. Ortega-Gomez A., Perretti M., Soehnlein O. Resolution of inflammation: an integrated view. EMBO Mol Med 2013; 5: 661-674. DOI: 10.1002/emmm.201202382.
3. Heidt T., Courties G., Dutta P. et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ Res 2014; 115: 284-295. DOI: 10.1161/CIRCRESAHA.115.303567.
4. Weinberger T., Schulz C. Myocardial infarction: a critical role of macrophages in cardiac remodeling. Front Physiol 2015; 6: 1-8. DOI: 10.3389/fphys.2015.00107.
5. Hoffman U., Frantz S. Role of lymphocytes in myocardial injury, healing and remodeling after myocardial infarction. Circ Res 2015; 16: 354-367. DOI: 10.1161/CIRCRESAHA.116.304072.
6. De Couto G., Liu W., Tseliou E. et al. Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. J Clin Invest 2015; 125: 3147-3162. DOI: 10.1172/JCI81321.
7. Shiraishi M., Shintani Y., Shintani Y. et al. Alternatively activated macrophages determine repair of the infarcted adult murine heart. J Clin Invest 2016; 126: 2151-2166. DOI: 10.1172/JCI85782.
8. Grunewald M., Avraham I., Dor Y. et al. VEGF-induced adult neovascularization: recruitment, retention and role of accessory cells. Cell 2006; 124: 175-189. DOI: 10.1016/j.cell.2005.10.036.
9. Moldovan N., Goldschmit-Clermont P., Parker-Thornburg J. et al. Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ Res 2000; 87: 378-384. DOI: 10.1161 /01.RES.87.5.378.
10. Ogle M., Segar C., Sridhar S., Botchwey E. Monocytes and macrophages in tissue repair: implications for immunoregenerative biomaterial design. Exp Biol Med 2016; 241: 1084-1097. DOI: 10.1177/1535370216650293.
11. Nahrendorf M., Pittet M., Swirski F. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 2010; 121: 2437-2445. DOI: 10.1161/CIRCULATIONAHA.109.916346.
12. Panizzi P., Swirski F., Figueiredo J. et al. Impaired infarct healing in atherosclerotic mice with Ly-6Chi monocytosis. J Am Coll Cardiol 2010; 55: 1629-1638. DOI: 10.1016/j.jacc.2009.08.089.
13. Fried S.K., Bunkin D.A., Greenberg A.S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab 1998; 83: 847-850. DOI: 10.1210/jcem.83.3.4660.
14. Zlatanova I., Pinto C., Silvestre J. Immune modulation of cardiac repair and regeneration: the art of mending broken hearts. Front Cardiovasc Med 2016; 3: 1-8. DOI: 10.3389/fcvm.2016.00040.
15. Martinez F., Gordon S., Locati M., Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 2006; 177: 7303-7011. DOI: 10.4049/jimmunol.177.10.7303.
16. Durante W., Johnson F., Johnson R. Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin Exp Pharmacol Physiol 2007; 34: 906-911. DOI: 10.1111/j.1440-1681.2007.04638.x.
17. O'Meara C., Wamstad J., Gladstone R. et al. Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. Circ Res 2015; 116: 804-815. DOI: 10.1161/CIRCRESAHA.116.304269.
18. Frantz S., Nahrendorf M. Cardiac macrophages and their role in ischemic heart disease. Cardiovasc Res 2015; 102: 240-248. DOI: 10.1093/cvr/cvu025.
19. Leuschner F., Dutta P., Gorbatov R. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotecnol 2011; 29: 1005-1010. DOI: 10.1038/nbt.1989.
20. Majmudar M., Keliher E., Heidt T. et al. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation 2013; 127: 2038-2046. DOI: 10.1161 /CIRCULATIONAHA.112.000116.
21. Courties G., Heidt T., Sebas M. et al. In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing. J Am Coll Cardiol 2014; 63: 1556-1566. DOI: 10.1016/j.jacc.2013.11.023.
22. Aouadi M., Tencerova M., Vangala P. et al. Gene silencing in adipose tissue macrophages regulates whole-body metabolism in obese mice. PNAS 2013; 110: 8278-8283. DOI: 10.1073/pnas.1300492110.
23. Tencerova M., Aouadi M., Vangala P. et al. Activated Kupffer cells inhibit insulin sensitivity in obese mice. FASEB J 2015; 29: 2959-2969. DOI: 10.1096/fj.15-270496.
24. Weber G.F. Metabolism in cancer metastasis. Int J Cancer 2016; 138: 2061-2066. DOI: 10.1002/ijc.29839.
25. Dupuy F., Tabariès S., Andrzejewski S. et al. PDK1-dependent metabolic reprogramming dictates metabolic potential in breast cancer. Cell Metab 2015; 22: 577-589. DOI: 10.1016/j.cmet.2015.08.007.
26. Yoshida G. Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res 2015; 34: 111. DOI: 10.1186/s13046-015-0221-y.
27. Yoshikawa M., Tsuchihashi K., Ishimoto T. et al. xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamos cell carcinoma. Cancer Res 2013; 73: 1855-1866. DOI: 10.1158/0008-5472. CAN-12-3609-T.
28. Nicolau-Galmés F., Asumendi A., Alonso-Tejerina E. et al. Terfenadine induce apoptosis and autophagy in melanoma cells through ROS-dependent and -independent mechanisms. Apoptosis 2011; 16: 1253-1267. DOI: 10.1007/s10495-011-0640-y.
29. Jeong H., Oh H., Nam S. et al. The critical role of mast cells-derived hypoxia-inducible factor-1 alpha in human and mouse melanoma growth. Int J Cancer 2013; 132: 2492-2501. DOI: 10.1002/ijc.27937.
30. Barbieri F., Thellung S., Ratto A. et al. In vivo and in vitro antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumours. BMC Cancer 2015; 15: 228. DOI: 10.11 86/s12885-015-1235-8.
31. Kato H., Sekine Y., Furuya Y. et al. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor. Biochem Biophys Res Commun 2015; 461: 115-121. DOI: 10.1016/j.bbrc.2015.03.178.
32. Freemerman A., Johnson A., Sacks G. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1) - mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem 2014; 289: 7884-7896. DOI: 10.1074/jbc.M113.522037.
33. Kelly B., O’Neill L. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 2015; 25: 771-784. DOI: 10.1038/cr.2015.68.
34. Krawczyk C., Holowka T., Sun J. et al. Toll-like receptor-induced changes in glycolitic metabolism regulate dendritic cell activation. Blood 2010; 115: 4742-4749. DOI: 10.1182/blood-2009-10-249540.
35. Dang E., Barbi J., Yang H. et al. Control of T (H) 17/Tregbalance by hypoxia-inducible factor 1. Cell 2011; 146: 772-784. DOI: 10.1016/j.cell.2011.07.033.
36. Corcoran S., O’Neill L. HIF1alpha and metabolic reprogramming in inflammation. J Clin Invest 2016; 126: 3699-3707. DOI: 10.1172/JCI84431.
37. Saxton R., Sabatini D. mTOR signaling in growth, metabolism and disease. Cell 2017; 168: 960-976. DOI: 10.1016/j.cell.2017.02.004.
38. Rathnasamy G., Ling E., Kaur C. Hypoxia-inducible factor-1alpha mediates iron uptake which induces inflammatory response in amoeboid microglial cells in development periventricular white matter through MAP kinase pathway. Neuropharmacology 2014; 77: 428-440. DOI: 10.1016/j.neuropharm.2013.10.024.
39. Li J., Jiang G., Chen Y. et al. Altered expression of hypoxia-inducible factor-1alpha participates in epileptogenesis in animal models. Synapse 2014; 68: 402-409. DOI: 10.1002/syn.21752.
40. Narita T., Yin S., Gelin C.F. et al. Identification a novel small molecule HIF-1a translation inhibitor. Clin Cancer Res 2009; 15: 6128-6136. DOI: 10.1158/1078-0432. CCR-08-3180.
41. Yu P., Hong C., Sachidanandan C. et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol 2008; 4: 33-41. DOI: 10.1038/nchembio.2007.54.
42. Meley D., Bauvy C., Houben-Weerts J. et al. AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem 2006; 281: 34870-34879. DOI: 10.1074/jbc.M605488200.
43. Horbelt D., Boergermann J., Chaikuad A. et al. Small molecules dorsomorphin and LDN-193189 inhibit myostatin/GDF8 signaling and promote functional myoblast differentiation. J Biol Chem 2014; 290: 3390-3404. DOI: 10.1074/jbc.M114.604397.
44. Hao J., Daleo M., Murphy C. et al. Dorsomorphin, a selective small molecule inhibitor of BMP signaling, promotes cardiomyogenesis in embryonic stem cells. PLoS One 2008; 3: e2904. DOI: 10.1371/journal.pone.0002904.
45. Garulli C., Kalogris C., Pietrella L. et al. Dorsomorphin reverses the mesenchymal phenotype of breast cancer initiating cells by inhibition of bone morphogenic protein signaling. Cell Signaling 2014; 26: 352-362. DOI: 10.1016/j.cellsig.2013.11.022.
46. Habib A., Finn A.V. The role of iron metabolism as a mediator of macrophages inflammation and lipid handling in atherosclerosis. Front Pharmacol 2014; 5: 1-6. DOI: 10.3389/fphar.2014.00195.
47. Sag D., Carling D., Stout R., Suttles J. AMP-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 2008; 181: 8633-8641. DOI: 10.4049/jimmunol.181.12.8633.
48. Riboldi E., Porta C., Morlacchi S. et al. Hypoxia-mediated regulations of macrophage functions in pathophysiology. Int Immunol 2012; 25: 67-75. DOI: 10.1093/intimm/dxs110.
49. Polizzotti B. D., Arab S., Kuhn B. Intrapericardial delivery of gel-foam enables the targeted delivery of periostine peptide after myocardial infarction by inducing fibrin clot formation. PLoS One 2012; 7: e36788. DOI: 10.1371/journal.pone.0036788.