Статья
Сосудистое старение в концепциях EVA и SUPERNOVA: непрерывный поиск повреждающих и протективных факторов
В вопросах профилактики кардиометаболических заболеваний мы чаще всего опираемся на понятия риска и болезни, а не возможности сохранения здоровья. Концепция «сосудистого возраста» разработана для оценки биологического состояния артерий и выражения сердечно-сосудистого риска в годах для лучшего понимания врачом и пациентом. Преждевременное старение сосудов (на английском early vascular aging (EVA) синдром) изучается более 10 лет в рамках определения оптимальных критериев диагностики и терапевтических подходов лечения. В 2019 году ведущие эксперты в области изучения сосудистой жесткости предложили противоположную концепцию супернормального сосудистого старения (SUPERNOVA), при которой у пациентов наблюдаются чрезвычайно низкие показатели сосудистой жесткости для их возраста и пола. В настоящем обзоре обсуждаются новые данные о факторах, которые ускоряют или замедляют сосудистое старение.
1. Koopman JJE, Kuipers RS. From arterial ageing to cardiovascular disease. Lancet. 2017;389(10080):1676-1678. doi:10.1016/S0140-6736(17)30763-8
2. Groenewegen KA, den Ruijter HM, Pasterkamp G, Polak JF, Bots ML, Peters SA. Vascular age to determine cardiovascular disease risk: a systematic review of its concepts, definitions, and clinical applications. Eur J Prev Cardiol. 2016;23(3):264-274. doi:10.1177/2047487314566999
3. Ротарь О. П., Алиева А. С., Бояринова М. А., Толкунова К. М., Конради А. О. Концепция сосудистого возраста: какой инструмент для оценки выбрать в клинической практике? Кардиология. 2019;59(2):45-53. doi:10.18087/cardio.2019.2.10229
4. Солдатенкова Н. А., Орлов А. В., Ротарь О. П., Алиева А. С., Бояринова М. А., Могучая Е. В. и др. Раннее сосудистое старение: распространенность и предикторы в российской популяции. Биотехносфера. 2016;2(44):22-28.
5. Арутюнов А. Г., Ноздрин А. В., Шавгулидзе К. Б., Ток-мин Д. С., Осадчий И. В. Различия паспортного и биологического (фактического) возраста в популяции российских пациентов, страдающих артериальной гипертензией (анализ регистра «ГИПЕРИОН»). Терапевтический архив. 2018;90(4):21-28. doi:10.26442/terarkh201890421-28
6. Laurent S, Boutouyrie P, Cunha PG, Lacolley P, Nilsson PM. Concept of extremes in vascular aging. From early vascular aging to supernormal vascular aging. Hypertension. 2019;74(2):218-228. doi:10.1161/HYPERTENSIONAHA.n9.12655
7. Eisenberg DT. An evolutionary review of human telomere biology: the trifty telomere hypothesis and notes on potential adaptive paternal effects. Am J Human Biol. 2011;23(2):149—167. doi:10.1002/ajhb.21127
8. Nilsson PM, Tufvesson H, Leosdottir M, Melander O. Telomeres and cardiovascular disease risk: an update 2013. Translat Res. 2013;162(6):371-380. doi:10.1016/j.trsl.2013.05.004
9. Laganovic M, Bendix L, Rubelj I, Kirhmajer MV, Slade N, Lela IV at al. Reduced telomere length is not associated with early signs of vascular aging in young men born after intrauterine growth restriction: a paradox? J Hypertens. 2014;32(8):1613-1620. doi:10.1097/HJH.0000000000000217
10. Arnoult N, Van Beneden A, Decottignies A. Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1a. Nat Struct Mol Biol. 2012;19(9):948-956. doi:10.1038/nsmb.2364
11. Fyhrquist F, Saijonmaa O. Telomere length and cardiovascular aging. Ann Med. 2012;44(1):138-142. doi:10.3109/07853890.2012.660497
12. Masi S, D’Aiuto F, Martin-Ruiz C, Kahn T, Wong A, Ghosh AK et al. Rate of telomere shortening and cardiovascular damage: a longitudinal study in the 1946 British Birth Cohort. Eur Heart J. 2014;35(46):3296-3303. doi:10.1093/eurheartj/ehu226
13. McDonnell BJ, Maki-Petaja KM, Munnery M, Yasmin, Wilkinson IB, Cockcroft JR et al. Habitual exercise and blood pressure: age dependency and underlying mechanisms. Am J Hypertens. 2013;26(3):334-341. doi:10.1093/ajh/hps055
14. Mangino M, Cecelja M, Menni C, Tsai PC, Yuan W, Small K et al. Integrated multiomics approach identifies calcium and integrin-binding protein-2 as a novel gene for pulse wave velocity. J Hypertens. 2016;34(1):79-87. doi:10.1097/HJH.0000000000000732
15. Herrera VL, Decano JL, Giordano N, Moran AM, Ruiz-Opazo N. Aortic and carotid arterial stiffness and epigenetic regulator gene expression changes precede blood pressure rise in stroke-prone Dahl salt-sensitive hypertensive rats. PLoS One. 2014;9(9):e107888. doi:10.1371/journal.pone.0107888
16. Wan YZ, Gao P, Zhou S, Zhang ZQ, Hao DL, Lian LS et al. SIRT1-mediated epigenetic downregulation of plasminogen activator inhibitor-1 prevents vascular endothelial replicative senescence. Aging Cell. 2014;13(5):890-899. doi:10.1111/acel.12247
17. Majesky MW, Horita H, Ostriker A, Lu S, Regan JN, Bagchi A et al. Differentiated smooth muscle cells generate a subpopulation of resident vascular progenitor cells in the adventitia regulated by Klf4. Circ Res. 2017;120(2):296-311. doi:10.1161/CIRCRESAHA.116.309322
18. Koivistoinen T, Hutri-Kahonen N, Juonala M, Aatola H, Koobi T, Lehtimaki T et al. Metabolic syndrome inchildhood and increased arterial stiffness in adulthood: the Cardiovascular Risk In Young Finns Study. Ann Med. 2011;43(4):312-319. doi:10.3109/07853890.2010.549145
19. Santhanam L, Tuday EC, Webb AK, Dowzicky P, Kim JH, Oh YJ et al. Decreased S-nitrosylation of tissue transglutaminase contributes to age-related increases in vascular stiffness. Circ Res. 2010;107(1):117-125. doi:10.1161/CIRCRESAHA.109.215228
20. Lees JS, Chapman FA, Witham MD, Jardine AG, Mark PB. Vitamin K status, supplementation and vascular disease: a systematic review and meta-analysis. Heart. 2019;105(12):938-945. doi:10.1136/heartjnl-2018-313955
21. Chen HG, Sheng LT, ZhangYB, CaoAL, Lai YW, Kunutsor SK et al. Association of vitamin K with cardiovascular events and allcause mortality: a systematic review and meta-analysis. Eur J Nutr. 2019;58(6):2191-2205. doi: 10.1007/s00394-019-01998-3
22. Caesar R, Fak F, Backhed F. Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism. J Intern Med. 2010;268(4):320-328. doi:10.1111/j.1365-2796.2010.02270.x
23. Menni C, Lin C, CeceljaM, Mangino M, Matey-Hemandez ML, Keehn L et al. Gut microbial diversity is associated with lower arterial stiffness in women. Eur Heart J. 2018;39(25):2390-2397. doi:10.1093/eurheartj/ehy226
24. Boutagy NE, McMillan RP, Frisard MI, Hulver MW. Metabolic endotoxemia with obesity: is it real and is it relevant? Biochimie. 2016;124:11-20. doi:10.1016/j.biochi.2015.06.020
25. Caricilli AM, Saad MJ. Gut microbiota composition and its effects on obesity and insulin resistance. Curr Opin Clin Nutr Metab Care. 2014;17(4):312-318. doi:10.1097/MC0.0000000000000067
26. Tanaka H, Palta P, Folsom AR, Meyer ML, Matsushita K, Evenson KR et al. Habitual physical activity and central artery stiffening in older adults: the Atherosclerosis Risk in Communities study. J Hypertens. 2018;36(9):1889-1894. doi:10.1097/HJH.0000000000001782
27. Wong A, Kwak YS, Scott SD, Pekas EJ, Son WM, Kim JS et al. The effects of swimming training on arterial function, muscular strength, and cardiorespiratory capacity in postmenopausal women with stage 2 hypertension. Menopause. 2018;26(6):653-658. doi: 10.1097/GME.0000000000001288
28. Fleenor BS, Marshall KD, Durrant JR, Lesniewski LA, Seals DR. Arterial stiffening with ageing is associated with transforming growth factor-P1-related changes in adventitial collagen: reversal by aerobic exercise. J Physiol. 2010;588(20):3971-3982. doi:10.n13/jphysiol.2010.194753
29. Shibata S, Fujimoto N, Hastings JL, Carrick-Ranson G, Bhella PS, Hearon CM et al. The effect of lifelong exercise frequency on arterial stiffness. J Physiol. 2018;596(14):2783-2795. doi:10.n13/JP275301
30. Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of vascular smooth muscle contraction and the basis for pharmacologic treatment of smooth muscle disorders. Pharmacol Rev. 2016;68(2):476-532. doi:10.1124/pr.115.010652
31. Okamoto T, Masuhara M, Ikuta K. Upper but not lower limb resistance training increases arterial stiffness in humans. Eur J Appl Physiol. 2009;107(2):127-134. doi:10.1007/s00421-009-1110-x
32. Jefferson ME, Nicklas BJ, Chmelo EA, Crotts CI, Shaltout HA, Diz DI et al. Effects of resistance training with and without caloric restriction on arterial stiffness in overweight and obese older adults. Am J Hypertens. 2016;29(4):494-500. doi:10.1093/ajh/hpv139
33. Figueroa A, Park SY, Seo DY, Sanchez-Gonzalez MA, Baek YH. Combined resistance and endurance exercise training improves arterial stiffness, blood pressure, and muscle strength in postmenopausal women. Menopause. 2011;18(9):980-984. doi:10.1097/gme.0b013e3182135442
34. Yoshizawa M, Maeda S, Miyaki A, Misono M, Choi Y, Shimojo N et al. Additive beneficial effects of lactotripeptides and aerobic exercise on arterial compliance in postmenopausal women. Am J Physiol Heart Circ Physiol. 2009;297(5): 1899-1903. doi:10.1152/ajpheart.00433.2009
35. Park W, Miyachi M, Tanaka H. Does aerobic exercise mitigate the effects of cigarette smoking on arterial stiffness? J Clin Hypertens (Greenwich). 2014;16(9):640-4. doi: 10.1111/jch.12385
36. George J, Hussain M, Vadiveloo T, Ireland S, Hopkinson P, Struthers AD et al. Cardiovascular Effects of Switching From Tobacco Cigarettes to Electronic Cigarettes. J Am Coll Cardiol. 2019;74(25):3112-3120. doi:10.1016/j.jacc.2019.09.067
37. Franzen KF, Willig J, Cayo Talavera S, Meusel M, Sayk F, Reppel M et al. E-cigarettes and cigarettes worsen peripheral and central hemodynamics as well as arterial stiffness: A randomized, double-blinded pilot study. Vasc Med. 2018;23(5):419-425. doi:10. 1177/1358863X18779694
38. Cossio R, Cerra ZA, Tanaka H. Vascular effects of a single bout of electronic cigarette use. Clin Exp Pharmacol Physiol. 2020;47(1):3-6. doi: 10.1111/1440-1681.13180
39. Caporale A, Langham MC, Guo W, JohncolaA, Chatterjee S, Wehrli FW. Acute Effects of Electronic Cigarette Aerosol Inhalation on Vascular Function Detected at Quantitative MRI. Radiology. 2019;293(1):97-106. doi:10.1148/radiol.2019190562
40. Xue C, Chen QZ, Bian L, Yin ZF, Xu ZJ, Zhang AL et al. Effects of smoking cessation with nicotine replacement therapy on vascular endothelial function, arterial stiffness, and inflammation response in healthy smokers. Angiology. 2019;70(8):719-725. doi:10.1177/0003319719853458
41. Rezk-Hanna M, Doering L, Robbins W, Sarna L, ElashoffRM, Victor RG. Acute effect of hookah smoking on arterial stiffness and wave reflections in adults aged 18 to 34 years of age. Am J Cardiol. 2018;122(5):905-909. doi:10.1016/j.amjcard.2018.05.033
42. Charakida M, Georgiopoulos G, Dangardt F, Chiesa ST, Hughes AD, Rapala A et al. Early vasculardamage from smoking and alcohol in teenage years: the ALSPAC study. Eur Heart J. 2019;21;40(4):345-353. doi:10.1093/eurheartj/ehy524
43. Juonala M, Viikari JSA, Kahonen M, Laitinen T, Taittonen L, Loo B-M et al. Alcohol consumption is directly associated with carotid intima-media thickness in Finnish young adults: the Cardiovascular Risk in Young Finns Study. Atherosclerosis 2009;204:e93-e98.
44. Hwang CL, Piano MR, Thur LA, Peters TA, da Silva ALG, Phillips SA. The effectsrepeated binge drinking on arterial stiffness and norepinephrine levels in young adults. J Hypertens. 2020; 38(1):111-117. doi:10.1097/HJH.0000000000002223
45. Agabiti-Rosei C, Favero G, De Ciuceis C, Rossini C, Porteri E, Rodella LF et al. Effect of long-term treatment with melatonin on vascular markers of oxidative stress/inflammation and on the anticontractile activity of perivascular fat in aging mice. Hypertens Res. 2017;40(1):41-50. doi:10.1038/hr.2016.103
46. Lee FY, Sun CK, Sung PH, Chen KH, Chua S, Sheu JJ et al. Daily melatonin protects the endothelial lineage and functional integrity against the aging process, oxidative stress, and toxic environment and restores blood flow in critical limb ischemia area in mice. J Pineal Res. 2018;65(2): e12489. doi:10.1111/jpi.12489
47. Грищенко О. О., Бродовская Т. О., Гришина И. Ф, Пере-толчина Т. Ф. Особенности ремоделирования сонных артерий у пациентов с синдромом обструктивного апноэ сна в контексте концепции раннего старения. Практическая медицина. 2019;2(17):84-88.
48. Qortuk M, Akyol S, Baykan AO, Kiraz K, Ufar H, Qayli M et al. Aortic stiffness increases in proportion to the severity of apnoea-hypopnea index in patients with obstructive sleep apnoea syndrome. Clin Respir J. 2016;10(4):455-61. doi:10.1111/crj.12244
49. WHO Air pollution. World Health Organization, 2015. Available from:who.int/airpollution/data/en
50. Lundback M, Mills NL, Lucking A, Barath S, Donaldson K, Newby DE et al. Experimental exposure to diesel exhaust increases arterial stiffness in man. Part Fibre Toxicol. 2009;6:7. doi:10.1186/1743-8977-6-7
51. Wu CF, Shen FH, Li YR, Tsao TM, Tsai MJ, Chen CC et al. Association of short-term exposure to fine particulate matter and nitrogen dioxide with acute cardiovascular effects. Sci Total Environ. 2016;569-570:300-305. doi:10.1016/j.scitotenv.2016.06.084
52. Tamagawa E, Bai N, Morimoto K, Gray C, Mui T, Yatera K et al. Particulate matter exposure induces persistent lung inflammation and endothelial dysfunction. Am J Physiol Lung Cell Mol Physiol. 2008;295(1):79-85. doi:10.1152/ajplung.00048.2007
53. Thurston GD, Newman JD. Walking to a pathway for cardiovascular effects of air pollution. Lancet. 2018;391(10118):291-292. doi:10.1016/S 0140-6736(17)33078-7
54. WHO Burden of disease from environmental noise. World Health Organization; 2011Available from: http://www.euro.who.int/__data/assets/pdf_file/0008/136466/e94888.pdf
55. Basner M, Muller U, Elmenhorst EM. Single and combined effects of air, road, and rail traffic noise on sleep and recuperation. Sleep. 2011;34:11-23
56. Schmidt FP, Basner M, Kroger G, Weck S, Schnorbus B, Muttray A et al. Effect of nighttime aircraft noise exposure on endothelial function and stress hormone release in healthy adults. Eur Heart J. 2013;34(45):3508-14a. doi:10.1093/eurheartj/eht269
57. Rojek M, Rajzer MW, Wojciechowska W, Drozdz T, Skalski P, Pizon T et al. Relationship among long-term aircraftnoiseexposure, bloodpressureprofile, and arterialstiffness. J Hypertens. 2019;37(7):1350-1358. doi: 10.1097/HJH.0000000000002060
58. Liberale L, Montecucco F, Tardif JC, Libby P, Camici GG. Inflamm-ageing: the role of inflammation in age-dependent cardiovascular disease. Eur Heart J. 2020;1-14. doi:10.1093/eurheartj/ehz961
59. Marchesi C, Ebrahimian T, Angulo O, Paradis P, Schiffrin EL. Endothelial NO synthase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome. Hypertension. 2009;54(6):1384-1392. doi: 10.1161/HYPERTENSIONAHA.109.138305
60. Schiffrin EL. T Lynphocytes: a role in hypertension? Curr Opin Nephrol Hypertens. 2010;19(2):181-186. doi:10.1097/MNH.0b013e3283360a2e
61. Harbord M, Annese V, Vavricka SR, Allez M, Barreiro-de Acosta M, Boberg KM et al. The first European evidence-based consensus on extra-intestinal manifestations in inflammatory bowel disease. J Crohns Colitis. 2016;10(3):239-254. doi:10.1093/ecco-jcc/jjv213
62. Zanoli L, Inserra G, Castellino P. Increased cardiovascular risk in subjects with a low prevalence of classic cardiovascular risk factors: the inflammatory bowel disease paradox. Trends Cardiovasc Med. 2015;25(8):705-706. doi:10.1016/j.tcm.2015.04.001
63. Zanoli L, Boutouyrie P, Fatuzzo P, Granata A, Lentini P, Ozturk K et al. Inflammation and aortic stiffness: an individual participant data meta-analysis in patients with inflammatory bowel disease. J Am Heart Assoc. 2017;6(10): e007003. doi: 10.1161/JAHA.117.007003
64. Ben-Shlomo Y, Spears M, Boustred C, May M,Anderson SG, Benjamin EJ et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17635 subjects. J Am Coll Cardiol. 2014;63(7):636-646. doi:10.1016/j.jacc.2013.09.063
65. Ikonomidis I, Makavos G, Papadavid E, Varoudi M, Andreadou I, Gravanis K et al. Similarities in coronary function and myocardial deformation between psoriasis and coronary artery disease: the role of oxidative stress and inflammation. Can J Cardiol. 2015;31(3):287-295. doi:10.1016/j.cjca.2014.11.002
66. Ikonomidis I, Papadavid E, Makavos G, Andreadou I, Varoudi M, Gravanis K et al. Lowering interleukin-12 activity improves myocardial and vascular function compared with tumor necrosis factor-a antagonism or cyclosporine in psoriasis. Circ Cardiovasc Imaging. 2017;10(9):e006283. doi: 10.1161/CIRCIMAGING.117.006283
67. Roifman I, Beck PL, Anderson TJ, Eisenberg MJ, Genest J. Chronic inflammatory diseases and cardiovascular risk: a systematic review. Can J Cardiol. 2011;27(2):174-182. doi:10.1016/j.cjca.2010.12.040
68. Маслянский А. Л., Пенин И. Н., Чешуина М. Д., Триши-на И. Н., Новикова А. Н., Колесова Е. П. и др. Общие закономерности продукции цитокинов и хемокинов у больных диффузными заболеваниями соединительной ткани, воспалительными артропатиями и атеросклерозом. Цитокины и воспаление. 2014;13(3):9-21.
69. Chen XM, Hu CP, Li YJ, Jiang JL. Cardiovascular risk in autoimmune disorders: role of asymmetric dimethylarginine. Eur J Pharmacol. 2012;696(1-3):5-11. doi:10.1016/j.ejphar.2012.09.019
70. Riccioni G, Bucciarelli V, Scotti L, Aceto A, D Orazio N, Di Ilio E et al. Relationship between asymmetric dimethylarginine and asymptomatic carotid atherosclerosis. J Biol Regul Homeost Agents. 2010;24(3):351-358.
71. Zewinger S, Schumann T, Fliser D, Speer T. Innate immunity in CKD-associated vascular diseases. Nephrol Dial Transplant. 2016;31:1813-1821. doi:10.1093/ndt/gfv358
72. Kooman JP, Dekker MJ, Usvyat LA, Kotanko P, van der Sande FM, Schalkwijk CG et al. Inflammation and premature aging in advanced chronic kidney disease. Am J Physiol Renal Physiol. 2017;313(4):F938-F950. doi: 10.1152/ajprenal.00256.2017
73. Yamada S, Tokumoto M, Tsuruya K, Tatsumoto N, Noguchi H, Kitazono T et al. Fetuin-A decrease induced by a low-protein diet enhances vascular calcification in uremic rats with hyperphosphatemia. Am J Physiol Renal Physiol. 2015;309:744-754. doi:10.1152/ajprenal.00017.2015
74. Smith ER, Hanssen E, McMahon LP, Holt SG. Fetuin-A-containing calciprotein particles reduce mineral stress in the macrophage. PLoS One 2013;8(4): e60904. doi:10.1371/journal.pone.0060904