Статья
Факторы преаналитического этапа, влияющие на уровни циркулирующих микроРНК плазмы и сыворотки крови
Циркулирующие микрорибонуклеиновые кислоты (микроРНК) являются перспективными биомаркерами различных заболеваний, однако их использование в клинических лабораторных условиях требует высокочувствительных, воспроизводимых, надежных и устойчивых методов, позволяющих проводить их точную количественную оценку в плазме и сыворотке крови. Преаналитическая фаза исследований, проводимых с использованием биообразцов, состоит из их сбора, обработки, хранения и транспортировки. Преаналитические условия остаются основными искажающими факторами в исследованиях микроРНК, а стандартизация этих условий, осуществляемая в биобанках, может оказать положительное влияние на воспроизводимость результатов исследований и возможность их сравнения. Целью обзора является рассмотрение основных современных оригинальных исследований, посвященных изучению преаналитических факторов, которые являются важным источником различий в исследованиях, посвященных циркулирующим микроРНК, на этапах от взятия крови до получения плазмы или сыворотки.
1. Khan J, Lieberman JA, Lockwood CM. Variability in, variability out: best practice recommendations to standardize pre-analytical variables in the detection of circulating and tissue microRNAs. Clin Chem Lab Med. 2017;55:608-21. doi:10.1515/cclm-2016-0471.
2. Markou AN, Lianidou ES. The impact of pre-analytical factors on the reliability of miRNA measurements. Curr Pathobiol Rep. 2019;7:29-33. doi:10.1007/s40139-019-00191-9.
3. Balzano F, Deiana M, Dei Giudici S, et al. miRNA Stability in Frozen Plasma Samples. Molecules. 2015;20:19030-40. doi:10.3390/molecules201019030.
4. Wang K, Zhang S, Weber J, et al. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 2010;38:7248-59. doi:10.1093/nar/gkq601.
5. O’Brien J, Hayder H, Zayed Y, et al. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402. doi:10.3389/fendo.2018.00402.
6. Blondal T, Jensby Nielsen S, Baker A, et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods. 2013;59:S1-6. doi:10.1016/j.ymeth.2012.09.015.
7. Reid G, Kirschner MB, van Zandwijk N. Circulating microRNAs: Association with disease and potential use as biomarkers. Crit Rev Oncol Hematol. 2011;80:193-208. doi:10.1016/j.critrevonc.2010.11.004.
8. Kim SH, MacIntyre DA, Sykes L, et al. Whole blood holding time prior to plasma processing alters microRNA expression profile. Front Genet. 2021;12:818334. doi:10.3389/fgene.2021.818334.
9. Binderup HG, Madsen JS, Heegaard NHH, et al. Quantification of microRNA levels in plasma — Impact of preanalytical and analytical conditions. PLoS One. 2018;13:e0201069. doi:10.1371/journal.pone.0201069.
10. Chan S-F, Cheng H, Goh KK-R, et al. Preanalytic Methodological Considerations and Sample Quality Control of Circulating miRNAs. J Mol Diagn. 2023;25:438-53. doi:10.1016/j.jmoldx.2023.03.005.
11. Van Der Schueren C, Decruyenaere P, Avila Cobos F, et al. Subpar reporting of pre-analytical variables in RNA-focused blood plasma studies. Mol Oncol. 2024. doi:10.1002/1878-0261.13647.
12. Binderup HG, Houlind K, Madsen JS, et al. Pre-storage centrifugation conditions have significant impact on measured micro-RNA levels in biobanked EDTA plasma samples. Biochem Biophys Rep. 2016;7:195-200. doi:10.1016/j.bbrep.2016.06.005.
13. Lee J-E, Kim Y-Y. Impact of preanalytical variations in blood-derived biospecimens on omics studies: Toward precision bio-banking? OMICS. 2017;21:499-508. doi:10.1089/omi.2017.0109.
14. Nair VS, Pritchard CC, Tewari M, et al. Design and analysis for studying microRNAs in human disease: A primer on -omic technologies. Am J Epidemiol. 2014;180:140-52. doi:10.1093/aje/kwu135.
15. McDonald JS, Milosevic D, Reddi HV, et al. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem. 2011;57:833-40. doi:10.1373/clinchem.2010.157198.
16. Wang K, Yuan Y, Cho J-H, et al. Comparing the MicroRNA spectrum between serum and plasma. PLoS One. 2012;7:e41561. doi:10.1371/journal.pone.0041561.
17. Mestdagh P, Hartmann N, Baeriswyl L, et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods. 2014;11:809-15. doi:10.1038/nmeth.3014.
18. Matias-Garcia PR, Wilson R, Mussack V, et al. Impact of longterm storage and freeze-thawing on eight circulating microRNAs in plasma samples. PLoS One. 2020;15:e0227648. doi:10.1371/journal.pone.0227648.
19. Kirschner MB, Kao SC, Edelman JJ, et al. Haemolysis during sample preparation alters microRNA content of plasma. PLoS One. 2011;6:e24145. doi:10.1371/journal.pone.0024145.
20. Cheng HH, Yi HS, Kim Y, et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One. 2013;8:e64795. doi:10.1371/journal.pone.0064795.
21. Kirschner MB, Edelman JJB, Kao SC-H, et al. The impact of hemolysis on cell-free microRNA biomarkers. Front Genet. 2013; 4:94. doi:10.3389/fgene.2013.00094.
22. Page K, Guttery DS, Zahra N, et al. Influence of plasma processing on recovery and analysis of circulating nucleic acids. PLoS One. 2013;8:e77963. doi:10.1371/journal.pone.0077963.
23. Zhao H, Shen J, Hu Q, et al. Effects of preanalytic variables on circulating microRNAs in whole blood. Cancer Epidemiol Biomarkers Prev. 2014;23:2643-8. doi:10.1158/1055-9965.EPI-14-0550.
24. Basso D, Padoan A, Laufer T, et al. Relevance of pre-analytical blood management on the emerging cardiovascular protein biomarkers TWEAK and HMGB1 and on miRNA serum and plasma profiling. Clin Biochem. 2017;50:186-93. doi:10.1016/j.clinbiochem.2016.11.005.
25. Glinge C, Clauss S, Boddum K, et al. Stability of circulating blood-based MicroRNAs — pre-analytic methodological considerations. PLoS One. 2017;12:e0167969. doi:10.1371/journal.pone.0167969.
26. Muth DC, Powell BH, Zhao Z, et al. miRNAs in platelet-poor blood plasma and purified RNA are highly stable: a confirmatory study. BMC Res Notes. 2018;11:273. doi:10.1186/s13104-018-3378-6.
27. Murray MJ, Watson HL, Ward D, et al. "Future-Proofing" Blood Processing for Measurement of Circulating miRNAs in Samples from Biobanks and Prospective Clinical Trials. Cancer Epidemiol Biomarkers Prev. 2018;27:208-18. doi:10.1158/1055-9965.EPI-17-0657.
28. Ward Gahlawat A, Lenhardt J, Witte T, et al. Evaluation of Storage Tubes for Combined Analysis of Circulating Nucleic Acids in Liquid Biopsies. Int J Mol Sci. 2019;20:704. doi:10.3390/ijms20030704.
29. Faraldi M, Sansoni V, Perego S, et al. Study of the preanalytical variables affecting the measurement of clinically relevant free-circulating microRNAs: focus on sample matrix, platelet depletion, and storage conditions. Biochem Med. 2020;30: 010703. doi:10.11613/BM.2020.010703.
30. Mussbacher M, Krammer TL, Heber S, et al. Impact of Anti-coagulation and Sample Processing on the Quantification of Human Blood-Derived microRNA Signatures. Cells. 2020;9:1915. doi:10.3390/cells9081915.
31. Suzuki K, Yamaguchi T, Kohda M, et al. Establishment of preanalytical conditions for microRNA profile analysis of clinical plasma samples. PLoS One. 2022;17:e0278927. doi:10.1371/journal.pone.0278927.
32. Zhelankin AV, Iulmetova LN, Sharova EI. The Impact of the Anticoagulant Type in Blood Collection Tubes on Circulating Extracellular Plasma MicroRNA Profiles Revealed by Small RNA Sequencing. Int J Mol Sci. 2022;23:10340. doi:10.3390/ijms231810340.
33. Sun J, Yang X, Wang T, et al. Evaluating the Effects of Storage Conditions on Multiple Cell-Free RNAs in Plasma by High-Throughput Sequencing. Biopreserv Biobank. 2023;21:242-54. doi:10.1089/bio.2022.0004.
34. Wakabayashi I, Marumo M, Ekawa K, et al. Differences in serum and plasma levels of microRNAs and their time-course changes after blood collection. Pract Lab Med. 2024;39:e00376. doi:10.1016/j.plabm.2024.e00376.
35. Goeman JJ, Solari A. Multiple hypothesis testing in genomics. Stat Med. 2014;33:1946-78. doi:10.1002/sim.6082.
36. Reid TJ, LaRussa VF, Esteban G, et al. Cooling and freezing damage platelet membrane integrity. Cryobiology. 1999;38:209-24. doi:10.1006/cryo.1999.2164.