Статья
Антифибротические эффекты ингибиторов натрий-глюкозного котранспортера 2-го типа (SGLT2) у пациентов с сердечной недостаточностью
Сердечная недостаточность (СН) — актуальная проблема общественного здравоохранения во всем мире. Основополагающая роль в прогрессировании СН отводится фиброзу, вызывающему структурные изменения миокарда и сосудистой стенки. В связи с этим представляется актуальным поиск патогенетически обоснованной терапии для лечения СН, направленной на замедление прогрессирования фиброза миокарда. Результаты исследования EMPA-REG OUTCOME показали, что сахароснижающие препараты, а именно ингибиторы натрий-глюкозного котранспортера 2 типа (SGLT2) положительно влияют на течение СН, снижая сердечно-сосудистую смертность и число госпитализаций пациентов по поводу декомпенсации СН. При изучении ингибиторов SGLT2 в крупномасштабных исследованиях были выявлены антифибротические свойства этой группы препаратов. В обзорной статье представлены результаты экспериментальных исследований применения ингибиторов SGLT2 на животных. Описан ряд механизмов реализации антифибротических свойств ингибиторов SGLT2, влияющих на сердечно-сосудистую систему. Представляется актуальным дальнейшее изучение ингибиторов SGLT2 в клинических исследованиях с целью выявления и коррекции патогенетических механизмов фиброзирования миокарда.
1. Theofilis P, Sagris M, Oikonomou E, et al. Pleiotropic effects of SGLT2 inhibitors and heart failure outcomes. Diabetes Res Clin Pract. 2022;188:109927. doi:10.1016/j.diabres.2022.109927.
2. Xu GR, Zhang C, Yang HX, et al. Modified citrus pectin ameliorates myocardial fibrosis and inflammation via suppressing galectin-3 and TLR4/MyD88/NF-κB signaling pathway. Biomed Pharmacother. 2020;126:110071. doi:10.1016/j.biopha.2020.110071.
3. Webber M, Jackson ST, Moon JC, et al. Myocardial Fibrosis in Heart Failure: Anti-Fibrotic Therapies and the Role of Cardiovascular Magnetic Resonance in Drug Trials. Cardiol Ther. 2020;9(2):363-76. doi:10.1007/s40119-020-00199-y.
4. Moady G, Tuvia B G, Shaul A. Sodium-Glucose Co-Transporter 2 Inhibitors in Heart FailureCurrent Evidence in Special Populations. Life (Basel). 2023;13(6):1256. doi:10.3390/life13061256.
5. Palmiero G, Cesaro A, Vetrano E, et al. Impact of SGLT2 Inhibitors on Heart Failure: From Pathophysiology to Clinical Effects. Int J Mol Sci. 2021;22(11):5863. doi:10.3390/ijms22115863.
6. Benham JL, Booth JE, Sigal RJ, et al. Systematic review and meta-analysis: SGLT2 inhibitors, blood pressure and cardiovascular outcomes. Int J Cardiol Heart Vasc. 2021;33:100725. doi:10.1016/j.ijcha.2021.100725.
7. Marshall RP, Simpson JK, Lukey PT. Strategies for biomarker discovery in fibrotic disease. Biochim Biophys Acta. 2013;1832(7):1079-87. doi:10.1016/j.bbadis.2013.01.018.
8. Ali O, Hajduczok AG, Boehmer JP. Remote Physiologic Monitoring for Heart Failure. Curr Cardiol Rep. 2020;22(8):68. doi:10.1007/s11886-020-01309-x.
9. Jumppanen M, Kinnunen SM, Välimäki MJ, et al. Synthesis, Identification, and StructureActivity Relationship Analysis of GATA4 and NKX2-5 Protein-Protein Interaction Modulators. J Med Chem. 2019;62(17):8284-310. doi:10.1021/acs.jmedchem.9b01086.
10. Migneault F, Hébert MJ. Autophagy, tissue repair, and fibrosis: a delicate balance. Matrix Biol. 2021;100-1:182-96. doi:10.1016/j.matbio.2021.01.003.
11. Ung CY, Onoufriadis A, Parsons M, et al. Metabolic perturbations in fibrosis disease. Int J Biochem Cell Biol. 2021;139:106073. doi:10.1016/j.biocel.2021.106073.
12. Каретникова В.Н., Кашталап В.В., Косарева С.Н. и др. Фиброз миокарда: современные аспекты проблемы. Терапевтический архив. 2017;89(1):88-93. doi:10.17116/terarkh201789188-93.
13. Ma ZG, Yuan YP, Wu HM, et al. Cardiac fibrosis: new insights into the pathogenesis. Int J Biol Sci. 2018;14(12):1645-57. doi:10.7150/ijbs.28103.
14. Kohl P, Camelliti P. Fibroblast-myocyte connections in the heart. Heart Rhythm. 2012;9(3):461-4. doi:10.1016/j.hrthm.2011.10.002.
15. Talman V, Ruskoaho H. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res. 2016;365(3):563-81. doi:10.1007/s00441-016-2431-9.
16. Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71(4):549-74. doi:10.1007/s00018-013-1349-6.
17. Fitchett D, Zinman B, Wanner Ch, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME trial. Eur Heart J. 2016;37(19):1526-34. doi:10.1093/eurheartj/ehv728.
18. Li C, Zhang J, Xue M, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol. 2019;18(1):15. doi:10.1186/s12933-019-0816-2.
19. Tian J, Zhang M, Suo M, et al. Dapagliflozin alleviates cardiac fibrosis through suppressing EndMT and fibroblast activation via AMPKα/TGF-β/Smad signalling in type 2 diabetic rats. J Cell Mol Med. 2021;25(16):7642-59. doi:10.1111/jcmm.16601.
20. Zhang Y, Lin X, Chu Y, et al. Dapagliflozin: a sodium-glucose cotransporter 2 inhibitor, attenuates angiotensin II-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling. Cardiovasc Diabetol. 2021;20(1):121. doi:10.1186/s12933-021-01312-8.
21. Lee S-G, Kim D, Lee J-J, et al. Dapagliflozin attenuates diabetes-induced diastolic dysfunction and cardiac fibrosis by regulating SGK1 signaling. BMC Med. 2022;20(1):309. doi:10.1186/s12916-022-02485-z.
22. Ye Y, Bajaj M, Yang H-C, et al. SGLT-2 Inhibition with Dapagliflozin Reduces the Activation of the Nlrp3/ASC Inflammasome and Attenuates the Development of Diabetic Cardiomyopathy in Mice with Type 2 Diabetes. Further Augmentation of the Effects with Saxagliptin, a DPP4 Inhibitor. Cardiovasc. Drugs Ther. 2017;31(2):119-32. doi:10.1007/s10557-017-6725-2.
23. Kelley N, Jeltema D, Duan Y, et al. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci. 2019;20(13):3328. doi:10.3390/ijms20133328.
24. Lee T-M, Chang N-C, Lin S-Z. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic. Biol. Med. 2017;104:298-310. doi:10.1016/j.freeradbiomed.2017.01.035.
25. Byrne NJ, Matsumura N, Maayah ZH, et al. Empagliflozin Blunts Worsening Cardiac Dysfunction Associated With Reduced NLRP3 (Nucleotide-Binding Domain-Like Receptor Protein 3) Inflammasome Activation in Heart Failure. Circ Heart Fail. 2020;13(1):e006277. doi:10.1161/CIRCHEARTFAILURE.119.006277.
26. Lee HC, Shiou YL, Jhuo SJ, et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats. Cardiovasc Diabetol. 2019;18(1):45. doi:10.1186/s12933-019-0849-6.
27. Requena-Ibáñez JA, Santos-Gallego CG, Rodriguez-Cordero A, et al. Mechanistic Insights of Empagliflozin in Nondiabetic Patients With HFrEF: From the EMPA-TROPISM Study. JACC Heart Fail. 2021;9(8):578-89. doi:10.1016/j.jchf.2021.04.014.
28. Kang S, Verma S, Hassanabad AF, et al. Direct effects of Empagliflozin on extracellular matrix remodeling in human cardiac fibroblasts: Novel translational clues to explain EMPAREG Outcome results. Can. J. Cardiol. 2020;36(4):543-53. doi:10.1016/j.cjca.2019.08.033.
29. Koyani CN, Plastira I, Sourij H, et al. Empagliflozin protects heart from inflammation and energy depletion via AMPK activation. Pharmacol. Res. 2020;158:104870. doi:10.1016/j.phrs.2020.104870.
30. Hasan R, Lasker S, Hasan A, et al. Canagliflozin attenuates isoprenaline-induced cardiac oxidative stress by stimulating multiple antioxidant and anti-inflammatory signaling pathways. Sci. Rep. 2020;10(1):14459. doi:10.1038/s41598-020-71449-1.
31. Jiang F, Liu G-S, Dusting GJ, et al. NADPH oxidase-dependent redox signaling in TGF-betamediated fibrotic responses. Redox Biol. 2014;2:267-72. doi:10.1016/j.redox.2014.01.012.
32. Pabel S, Hamdani N, Luedde M, et al. SGLT2 Inhibitors and Their Mode of Action in Heart Failure — Has the Mystery Been Unravelled? Curr Heart Fail Rep. 2021;18(5):315-28. doi:10.1007/s11897-021-00529-8.
33. Сабиров И.С., Муркамилов И.Т., Фомин В.В. Кардиопротективный потенциал ингибиторов натрий-глюкозного котранспортера (фокус на Эмпаглифлозин). Комплексные проблемы сердечно-сосудистых заболеваний. 2021;10(3):79-89. doi:10.17802/2306-1278-2021-10-3-79-89.
34. Baartscheer A, Schumacher CA, Van Borren MMGJ, et al. Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc. Res. 2003;57(4):1015-24. doi:10.1016/S0008-6363(02)00809-x.
35. Uthman L, Baartscheer A, Bleijlevens B, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: Inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia. 2018;61(3):722-6. doi:10.1007/s00125-017-4509-7.
36. Trum M, Riechel J, Lebek S, et al. Empagliflozin inhibits Na+/H+ exchanger activity in human atrial cardiomyocytes. ESC Heart Fail. 2020;7(6):4429-37. doi:10.1002/ehf2.13024.
37. Cheng ST, Chen L, Li SY, et al. The Effects of Empagliflozin, an SGLT2 Inhibitor, on Pancreatic beta-Cell Mass and Glucose Homeostasis in Type 1 Diabetes. PLoS ONE. 2016;11(1):e0147391. doi:10.1371/journal.pone.0147391.
38. Kondo H, Akoumianakis I, Badi I, et al. Effects of canagliflozin on human myocardial redox signalling: clinical implications. Eur Heart J. 2021;42(48):4947-60. doi:10.1093/eurheartj/ehab420.
39. Bray JJ, Foster-Davies H, Stephens JW. A systematic review examining the effects of sodium-glucose cotransporter-2 inhibitors (SGLT2is) on biomarkers of inflammation and oxidative stress. Diabetes Res Clin Pract. 2020;168:108368. doi:10.1016/j.diabres.2020.108368.
40. Tahara A, Kurosaki E, Yokono M, et al. Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice. Eur. J.Pharmacol. 2013;715(1-3):246-55. doi:10.1016/j.ejphar.2013.05.014.
41. Tahara A, Kurosaki E, Yokono M, et al. Effects of sodium-glucose cotransporter 2 selective inhibitor ipragliflozin on hyperglycaemia, oxidative stress, inflammation and liver injury in streptozotocin-induced type 1 diabetic rats. J. Pharm. Pharmacol. 2014;66(7):975-87. doi:10.1111/jphp.12223.
42. Garvey WT, Gaal LV, Leiter LA, et al. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism. 2018;85:32-7. doi:10.1016/j.metabol.2018.02.002.
43. Bonnet F, Scheen AJ. Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: the potential contribution to diabetes complications and cardiovascular disease. Diabetes Metab. 2018;44(6):457-64. doi:10.1016/j.diabet.2018.09.005.
44. Prattichizzo F, Nigris VD, Micheloni S, et al. Increases in circulating levels of ketone bodies and cardiovascular protection with SGLT2 inhibitors: Is low-grade inflammation the neglected component? Diabetes Obes. Metab. 2018;20(11):2515-22. doi:10.1111/dom.13488.
45. Kim SR, Lee S-G, Kim SH, et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat. Commun. 2020;11(1):2127. doi:10.1038/s41467-020-15983-6.