1. Mewton N, Liu CY, Croisille P, et al. Assessment of Myocardial Fibrosis With Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2011;57(8):891-903. DOI:10.1016/j.jacc.2010.11.013.
2. Shao J, Jiang JS, Wang XY, et al. Measurement of myocardial extracellular volume using cardiac dual-energy computed tomography in patients with ischaemic cardiomyopathy: a comparison of different methods. Int J Cardiovasc Imaging. 2022;38:1591-1600. DOI:10.1007/s10554-022-02532-z.
3. González A, Schelbert EB, Díez J, Butler J. Myocardial Interstitial Fibrosis in Heart Failure: Biological and Translational Perspectives. J Am Coll Cardiol. 2018;71(15):1696-706. DOI:10.1016/j.jacc.2018.02.021.
4. Sinitsyn VE, Mershina EA, Larina OM. The possibilities of magnetic resonance imaging in the diagnosis of cardiomyopathies. Clinical and experimental surgery. 2014;(1):54-63 (In Russ.) [Синицын В.Е., Мершина Е.А., Ларина О.М. Возможности магнитно-резонансной томографии в диагностике кардиомиопатий. Клиническая и экспериментальная хирургия. 2014;(1):54-63].
5. Mershina EA, Sinitsyn VE, Larina OM. Cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy and risk stratification of sudden cardiac death. Clinical and experimental surgery. 2019;7(3):70-8 (In Russ.) [Мершина Е.А., Синицын В.Е., Ларина О.М. Магнитно-резонансная томография сердца в диагностике гипертрофической кардиомиопатии и стратификации риска внезапной сердечной смерти. Клиническая и экспериментальная хирургия. 2019;7(3):70-8]. DOI:10.24411/2308-1198-2019-13008.
6. Nathan M, Ying LC, Pierre C, et al. Assessment of Myocardial Fibrosis with Cardiac Magnetic Resonance. J Am Coll Cardiol. 2011;57(8):891-903. DOI:10.1016/j.jacc.2010.11.013.
7. Vogel-Claussen J, Rochitte CE, Wu KC, et al. Delayed enhancement MR imaging: utility in myocardial assessment. Radiogr Rev Publ Radiol Soc N Am Inc. 2006;26(3):795-810. DOI:10.1148/rg.263055047.
8. Messroghli DR, Moon JC, Ferreira VM, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson. 2017;19(1):75. DOI:10.1186/s12968-017-0389-8.
9. Schelbert EB, Testa SM, Meier CG, et al. Myocardial extravascular extracellular volume fraction measurement by gadolinium cardiovascular magnetic resonance in humans: slow infusion versus bolus. J Cardiovasc Magn Reson. 2011;13(1):16. DOI:10.1186/1532-429X-13-16.
10. Schuleri KH, George RT, Lardo AC. Applications of cardiac multidetector CT beyond coronary angiography. Nat Rev Cardiol. 2009;6(11):699-710. DOI:10.1038/nrcardio.2009.172.
11. Danad I, Fayad ZA, Willemink MJ, Min JK. New Applications of Cardiac Computed Tomography: Dual-Energy, Spectral, and Molecular CT Imaging. JACC Cardiovasc Imaging. 2015;8(6):710-23. DOI:10.1016/j.jcmg.2015.03.005.
12. Treibel TA, Bandula S, Fontana M, et al. Extracellular volume quantification by dynamic equilibrium cardiac computed tomography in cardiac amyloidosis. J Cardiovasc Comput Tomogr. 2015;9(6):585-92. DOI:10.1016/j.jcct.2015.07.001.
13. Jablonowski R, Wilson MW, Do L, et al. Multidetector CT measurement of myocardial extracellular volume in acute patchy and contiguous infarction: validation with microscopic measurement. Radiology. 2015;274(2):370-8. DOI:10.1148/radiol.14140131.
14. Emoto T, Oda S, Kidoh M, et al. Myocardial Extracellular Volume Quantification Using Cardiac Computed Tomography: A Comparison of the Dual-energy Iodine Method and the Standard Subtraction Method. Acad Radiol. 2021;28(5):e119-26. DOI:10.1016/j.acra.2020.03.019.
15. Aoki T, Fukumoto Y, Sugimura K, et al. Prognostic impact of myocardial interstitial fibrosis in non-ischemic heart failure. Comparison between preserved and reduced ejection fraction heart failure. Circ J Off J Jpn Circ Soc. 2011;75(11):2605-13. DOI:10.1253/circj.cj-11-0568.
16. Qi RX, Shao J, Jiang JS, et al. Myocardial extracellular volume fraction quantitation using cardiac dual-energy CT with late iodine enhancement in patients with heart failure without coronary artery disease: A single-center prospective study. Eur J Radiol. 2021;140:109743. DOI:10.1016/j.ejrad.2021.109743.
17. Abadia AF, van Assen M, Martin SS, et al. Myocardial extracellular volume fraction to differentiate healthy from cardiomyopathic myocardium using dual-source dual-energy CT. J Cardiovasc Comput Tomogr. 2020;14(2):162-7. DOI:10.1016/j.jcct.2019.09.008.
18. Yamada A, Kitagawa K, Nakamura S, et al. Quantification of extracellular volume fraction by cardiac computed tomography for noninvasive assessment of myocardial fibrosis in hemodialysis patients. Sci Rep. 2020;10(1):15367. DOI:10.1038/s41598-020-72417-5.
19. Si-Mohamed SA, Restier LM, Branchu A, et al. Diagnostic Performance of Extracellular Volume Quantified by Dual-Layer Dual-Energy CT for Detection of Acute Myocarditis. J Clin Med. 2021;10(15):3286. DOI:10.3390/jcm10153286.
20. Aquino GJ, O’Doherty J, Schoepf UJ, et al. Myocardial Characterization with Extracellular Volume Mapping with a First-Generation Photon-counting Detector CT with MRI Reference. Radiology. 2023;307(2):e222030. DOI:10.1148/radiol.222030.
21. Oda S, Emoto T, Nakaura T, et al. Myocardial Late Iodine Enhancement and Extracellular Volume Quantification with Dual-Layer Spectral Detector Dual-Energy Cardiac CT. Radiol Cardiothorac Imaging. 2019;1(1):e180003. DOI:10.1148/ryct.2019180003.
22. Ohta Y, Kishimoto J, Kitao S, et al. Investigation of myocardial extracellular volume fraction in heart failure patients using iodine map with rapid-kV switching dual-energy CT: Segmental comparison with MRI T1 mapping. J Cardiovasc Comput Tomogr. 2020;14(4):349-55. DOI:10.1016/j.jcct.2019.12.032.
23. Kim NY, Im DJ, Youn JC, et al. Synthetic Extracellular Volume Fraction Derived Using Virtual Unenhanced Attenuation of Blood on Contrast-Enhanced Cardiac Dual-Energy CT in Nonischemic Cardiomyopathy. Am J Roentgenol. 2022;218(3):454-61. DOI:10.2214/AJR.21.26654.
24. Lee HJ, Im DJ, Youn JC, et al. Myocardial Extracellular Volume Fraction with Dual-Energy Equilibrium Contrast-enhanced Cardiac CT in Nonischemic Cardiomyopathy: A Prospective Comparison with Cardiac MR Imaging. Radiology. 2016;280(1):49-57. DOI:10.1148/radiol.2016151289.
25. Wang R, Liu X, Schoepf UJ, et al. Extracellular volume quantitation using dual-energy CT in patients with heart failure: Comparison with 3T cardiac MR. Int J Cardiol. 2018;268:236-40. DOI:10.1016/j.ijcard.2018.05.027.
26. Dubourg B, Dacher JN, Durand E, et al. Single-source dual energy CT to assess myocardial extracellular volume fraction in aortic stenosis before transcatheter aortic valve implantation (TAVI). Diagn Interv Imaging. 2021;102(9):561-70. DOI:10.1016/j.diii.2021.03.003.
27. Hayashi H, Oda S, Emoto T, et al. Myocardial extracellular volume quantification by cardiac CT in pulmonary hypertension: Comparison with cardiac MRI. Eur J Radiol. 2022;153:110386. DOI:10.1016/j.ejrad.2022.110386
28. Tavoosi A, Brito JB de O, El Mais H, et al. Dual versus single energy cardiac CT to measure extra cellular volume in cardiac amyloidosis: Correlations with cardiac MRI. Int J Cardiol Heart Vasc. 2023;44:101166. DOI:10.1016/j.ijcha.2022.101166.
29. Bandula S, White SK, Flett AS, et al. Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: validation against histologic findings. Radiology. 2013;269(2):396-403. DOI:10.1148/radiology.13130130.
30. Nacif MS, Kawel N, Lee JJ, et al. Interstitial myocardial fibrosis assessed as extracellular volume fraction with low-radiation-dose cardiac CT. Radiology. 2012;264(3):876-83. DOI:10.1148/radiol.12112458.
31. Ohta Y, Kitao S, Yunaga H, et al. Myocardial Delayed Enhancement CT for the Evaluation of Heart Failure: Comparison to MRI. Radiology. 2018;288(3):682-91. DOI:10.1148/radiol.2018172523.
32. Kurita Y, Kitagawa K, Kurobe Y, et al. Estimation of myocardial extracellular volume fraction with cardiac CT in subjects without clinical coronary artery disease: A feasibility study. J Cardiovasc Comput Tomogr. 2016;10(3):237-41. DOI:10.1016/j.jcct.2016.02.001.
33. Lisitskaya MV, Vershinina OYu, Mershina EA, et al. Determination of extracellular myocardial matrix by dual-energy computed tomography: a systematic review with meta-analysis. Medical Imaging. 2022;26(3):77-86 (In Russ.) [Лисицкая М.В., Вершинина О.Ю., Мершина Е.А., и др. Определение внеклеточного миокардиального матрикса методом двухэнергетической мультиспиральной томографии: систематический обзор с метаанализом. Медицинская Визуализация. 2022;26(3):77-86].
34. Thomas C, Patschan O, Ketelsen D, et al. Dual-energy CT for the characterization of urinary calculi: In vitro and in vivo evaluation of a low dose scanning protocol. Eur Radiol. 2009;19(6):1553-9. DOI:10.1007/s00330-009-1300-2.
35. Yu L, Primak AN, Liu X, McCollough CH. Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT. Med Phys. 2009;36(3):1019-24. DOI:10.1118/1.3077921.
36. Zhang D, Li X, Liu B. Objective characterization of GE discovery CT750 HD scanner: gemstone spectral imaging mode. Med Phys. 2011;38(3):1178-88. DOI:10.1118/1.3551999.