1. Astrin JJ, Betsou F. Trends in Biobanking: A Bibliometric Over view. Biopreserv Biobank. 2016;14(1):6574. doi:10.1089/bio.2015.0019.
2. Михайлова А. А., Насыхова Ю. А., Муравьев А. И. и др. На пути к созданию общего глоссария биобанков Российской Федерации. Кардиоваскулярная терапия и профилактика. 2020; 19(6):2710. doi:10.15829/1728880020202710.
3. Pokrovskaya MS, Sivakova OV, Efimova IA, et al. Biobanking as a necessary tool for research in the field of personalized medicine in the scientific medical center. Per Med. 2019;16(6):5019. doi:10.2217/pme20190049.
4. Begley CG, Ellis LM. Raise standards for preclinical cancer research. Nature. 2012;483(7391):5313. doi:10.1038/483531a.
5. Копылова О. В., Ершова А. И., Ефимова И. А. и др. Электронные истории болезни и биобанкирование. Кардиоваскулярная терапия и профилактика. 2022;21(11):3425. doi:10.15829/1728880020223425.
6. Manolio TA. Genomewide Association Studies and Assessment of the Risk of Disease. Feero WG, Guttmacher AE, eds. N Engl J Med. 2010;363(2):16676. doi:10.1056/NEJMra0905980.
7. Bastarache L, Denny JC, Roden DM. Phenome Wide Association Studies. JAMA. 2022;327(1):75. doi:10.1001/jama.2021.20356.
8. Linder JE, Bastarache L, Hughey JJ, Peterson JF. The Role of Elec tronic Health Records in Advancing Genomic Medicine. Annu Rev Genomics Hum Genet. 2021;22:21938. doi:10.1146/ annurev genom121120125204.
9. Zhu T, Wang W, Chen Y, et al. Machine Learning of Functional Connectivity to Biotype Alcohol and Nicotine Use Disorders. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023;S24519022(23)002227. doi:10.1016/j.bpsc.2023.08.010.
10. Wang X, Khurshid S, Choi SH, et al. Genetic Susceptibility to Atrial Fibrillation Identified via Deep Learning of 12Lead Electrocardiograms. Circ Genomic Precis Med. 2023;16(4):3409. doi:10.1161/CIRCGEN.122.003808.
11. Bellary S, Krishnankutty B, Latha M. Basics of case report form designing in clinical research. Perspect Clin Res. 2014;5(4):159. doi:10.4103/22293485.140555.
12. Cowie MR, Blomster JI, Curtis LH, et al. Electronic health records to facilitate clinical research. Clin Res Cardiol. 2017;106:19. doi:10.1007/s0039201610256.
13. Шальнова С. А., Драпкина О. М. Значение исследования ЭССЕРФ для развития профилактики в России. Кардиоваскулярная терапия и профилактика. 2020;19(3):2602. doi:10.15829/1728880020202602.
14. Manders P, Peters TM, Siezen AE et al. A Stepwise Procedure to Define a Data Collection Framework for a Clinical Biobank. Biopreserv Biobank. 2018;16(2):13847. doi:10.1089/BIO.2017.0084.
15. Мешков А. Н., Глотов А. С., Анисимов С. В. и др. Биобанкирование: национальное руководство. подготовлено экспертами Национальной ассоциации биобанков и специалистов по биобанкированию (НАСБИО). М.: Триумф, 2022. 308 c. ISBN: 9785936733222.
16. Abul Husn NS, Manickam K, Jones LK, et al. Genetic identification of familial hypercholesterolemia within a single U.S. health care system. Science. 2016;354(6319). doi:10.1126/SCIENCE.AAF7000.
17. Gottesman O, Kuivaniemi H, Tromp G, et al. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genet Med. 2013;15(10):76171. doi:10.1038/gim.2013.72.
18. eMERGE Consortium. Lessons learned from the eMERGE Network: balancing genomics in discovery and practice. Hum Genet Genomics Adv. 2021;2(1):100018. doi:10.1016/J.XHGG.2020.100018.
19. Denny JC, Ritchie MD, Basford MA, et al. PheWAS: demonstrating the feasibility of a phenomewide scan to discover genedisease associations. Bioinformatics. 2010;26(9):120510. doi:10.1093/BIOINFORMATICS/BTQ126.
20. Dumitrescu L, Goodloe R, Bradford Y, et al. The effects of electronic medical record phenotyping details on genetic association studies: HDLC as a case study. BioData Min. 2015;8(1):15. doi:10.1186/S1304001500482.
21. Newton KM, Peissig PL, Kho AN, et al. Validation of electronic medical record based phenotyping algorithms: results and lessons learned from the eMERGE network. J Am Med Informatics Assoc. 2013;20(e1):e14754. doi:10.1136/amiajnl2012000896.
22. Duan R, Cao M, Wu Y, et al. An Empirical Study for Impacts of Measurement Errors on EHR based Association Studies. AMIA. Annu Symp Proc AMIA Symp. 2016;2016:176473.
23. Krishnamoorthy P, Gupta D, Chatterjee S, et al. A Review of the Role of Electronic Health Record in Genomic Research. J Cardiovasc Transl Res. 2014;7(8):692700. doi:10.1007/s1226501495860.
24. Pacheco JA, Rasmussen LV, Wiley K, et al. Evaluation of the portability of computable phenotypes with natural language processing in the eMERGE network. Sci Rep. 2023;13(1):1971. doi:10.1038/S4159802327481y.
25. Khera A V., Chaffin M, Wade KH, et al. Polygenic Prediction of Weight and Obesity Trajectories from Birth to Adulthood. Cell. 2019;177(3):58796.e9. doi:10.1016/j.cell.2019.03.028.
26. Bešević J, Lacey B, Conroy M, et al. New Horizons: the value of UK Biobank to research on endocrine and metabolic disorders. J Clin Endocrinol Metab. 2022;107(9):240310. doi:10.1210/clinem/dgac407.
27. Conroy MC, Lacey B, Bešević J, et al. UK Biobank: a globally important resource for cancer research. Br J Cancer. 2023;128(4): 51927. doi:10.1038/s41416022020535.
28. Moore HM, Kelly A, Jewell SD, et al. Biospecimen Reporting for Improved Study Quality. Biopreserv Biobank. 2011;9(1):5770. doi:10.1089/BIO.2010.0036.
29. Сивакова О. В., Покровская М. С., Метель ская В. А. и др. Международные правила описания биообразцов — важный фактор повышения качества научных исследований. Профилактическая медицина. 2019;22(6):959. doi:10.17116/profmed20192206295.
30. Sauerbrei W, Taube SE, McShane LM, et al. Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): An Abridged Explanation and Elaboration. JNCI J Natl Cancer Inst. 2018;110(8):80311. doi:10.1093/jnci/djy088.
31. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. Eur J Clin Invest. 2015;45(2):20414. doi:10.1111/eci.12376.
32. Norlin L, Fransson MN, Eriksson M, et al. A Minimum Data Set for Sharing Biobank Samples, Information, and Data: MIABIS. Biopreserv Biobank. 2012;10(4):3438. doi:10.1089/bio.2012.0003.
33. Metzler I, Ferent LM, Felt U. On samples, data, and their mobility in biobanking: How imagined travels help to relate samples and data. Big Data Soc. 2023;10(1):205395172311586. doi:10.1177/20539517231158635.
34. Spjuth O, Krestyaninova M, Hastings J, et al. Harmonising and linking biomedical and clinical data across disparate data archives to enable integrative cross biobank research. Eur J Hum Genet. 2016;24(4):5218. doi:10.1038/ejhg.2015.165.
35. Eklund N, Andrianarisoa NH, van Enckevort E, et al. Extending the Minimum Information About BIobank Data Sharing Terminology to Describe Samples, Sample Donors, and Events. Biopreserv Biobank. 2020;18(3):15564. doi:10.1089/bio.2019.0129.
36. Gedye C, Sachchithananthan M, Leonard R, et al. Driving innovation through collaboration: development of clinical annotation datasets for brain cancer biobanking. Neuro Oncology Pract. 2020;7(1):317. doi:10.1093/nop/npz036.
37. Jarczak J, Lach J, Borówka P, et al. BioSCOOP — Biobank Sample Communication Protocol. New approach for the transfer of information between biobanks. Database. 2019;2019. doi:10.1093/database/baz105.
38. Proynova R, Alexandre D, Lablans M, et al. A Decentralized IT Architecture for Locating and Negotiating Access to Biobank Samples. Stud Health Technol Inform. 2017;243:759.
39. Vuokko R, Vakkuri A, Palojoki S. Systematized Nomenclature of Medicine Clinical Terminology (SNOMED CT) Clinical Use Cases in the Context of Electronic Health Record Systems: Systematic Literature Review. JMIR Med Informatics. 2023;11:e43750. doi:10.2196/43750.
40. Park HS, Cho H, Kim HS. Development of an Integrated Biospecimen Database among the Regional Biobanks in Korea. Healthc Inform Res. 2016;22(2):129. doi:10.4258/hir.2016.22.2.129.