1. Lynch M, Barallobre-Barreiro J, Jahangiri M, Mayr M. Vascular proteomics in metabolic and cardiovascular diseases. J Intern Med. 2016;280(4):325–338. DOI:10.1111/joim.12486.
2. Li T, Li X, Feng Y, et al. The Role of Matrix Metalloproteinase-9 in Atherosclerotic Plaque Instability. Mediators Inflamm. 2020;2020:3872367. DOI:10.1155/2020/3872367.
3. Mushenkova NV, Summerhill VI, Zhang D, et al. Current Advances in the Diagnostic Imaging of Atherosclerosis: Insights into the Pathophysiology of Vulnerable Plaque. Int J Mol Sci. 2020;21(8):2992. DOI:10.3390/ijms21082992.
4. Kumric M, Borovac JA, Martinovic D, et al. Circulating Biomarkers Reflecting Destabilization Mechanisms of Coronary Artery Plaques: Are We Looking for the Impossible? Biomolecules. 2021;11(6):881. DOI:10.3390/biom11060881.
5. Theofilis P, Sagris M, Antonopoulos AS, et al. Non-Invasive Modalities in the Assessment of Vulnerable Coronary Atherosclerotic Plaques. Tomography. 2022;8(4):1742-1758. DOI:10.3390/tomography8040147.
6. Kume N, Kita T. New scavenger receptors and their functions in atherogenesis. Curr Atheroscler Rep. 2002;4(4):253-7. DOI:10.1007/s11883-002-0001-y.
7. Badimon L, Peña E, Arderiu G, et al. C-Reactive Protein in Atherothrombosis and Angiogenesis. Front Immunol. 2018;9:430. DOI:10.3389/fimmu.2018.00430.
8. Щербак С.Г., Камилова Т. А., Лебедева С. В., и др. Биомаркеры каротидного стеноза. Физическая и реабилитационная медицина, медицинская реабилитация. 2021;3(1):104-130. DOI:10.36425/rehab64286.
9. Уткина Е.А., Афанасьева О. И., Покровский С. Н. С-реактивный белок: патогенетические свойства и возможная терапевтическая мишень. Российский кардиологический журнал. 2021;26(6):4138.] DOI:10.15829/1560-4071-2021-4138.
10. Jiang J, Zeng H, Zhuo Y, et al. Association of Neutrophil to Lymphocyte Ratio With Plaque Rupture in Acute Coronary Syndrome Patients With Only Intermediate Coronary Artery Lesions Assessed by Optical Coherence Tomography. Front Cardiovasc Med. 2022;9:770760. DOI:10.3389/fcvm.2022.770760.
11. Чаулин А.М., Григорьева Ю. В., Павлова Т. В., Дупляков Д. В. Диагностическая ценность клинического анализа крови при сердечно-сосудистых заболеваниях. Российский кардиологический журнал. 2020;25(12):3923. DOI:10.15829/1560-4071-2020-3923.
12. Li X, Li J, Wu G. Relationship of Neutrophil-to-Lymphocyte Ratio with Carotid Plaque Vulnerability and Occurrence of Vulnerable Carotid Plaque in Patients with Acute Ischemic Stroke. Biomed Res Int. 2021;2021:6894623. DOI:10.1155/2021/6894623.
13. Wang XH, Liu SQ, Wang YL, Jin Y. Correlation of serum high-sensitivity C-reactive protein and interleukin-6 in patients with acute coronary syndrome. Genet Mol Res. 2014;13(2):4260-6.22. DOI:10.4238/2014.June.9.11.
14. Chiorescu RM, Mocan M, Inceu AI, et al. Vulnerable Atherosclerotic Plaque: Is There a Molecular Signature? Int J Mol Sci. 2022;23(21):13638. DOI:10.3390/ijms232113638.
15. Groot HE, Al Ali L, van der Horst ICC, et al. Plasma interleukin 6 levels are associated with cardiac function after ST-elevation myocardial infarction. Clin Res Cardiol. 2019;108(6):612-621. DOI:10.1007/s00392-018-1387-z.
16. Held C, White HD, Stewart RAH, et al. Inflammatory Biomarkers Interleukin-6 and C-Reactive Protein and Outcomes in Stable Coronary Heart Disease: Experiences from the STABILITY (Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy) Trial. J Am Heart Assoc. 2017;6(10):e005077. DOI:10.1161/JAHA.116.005077.
17. Hara A, Niwa M, Noguchi K, et al. Galectin-3 as a Next-Generation Biomarker for Detecting Early Stage of Various Diseases. Biomolecules. 2020;10(3):389. DOI:10.3390/biom10030389.
18. Gao Z, Liu Z, Wang R, et al. Galectin-3 Is a Potential Mediator for Atherosclerosis. J Immunol Res. 2020;2020:1-11. DOI:10.1155/2020/5284728.
19. Blanda V, Bracale UM, Di Taranto MD, Fortunato G. Galectin-3 in cardiovascular diseases. Int J Mol Sci. 2020;21(23):9232. DOI:10.3390/ijms21239232.
20. Cheng Z, Cai K, Xu C, et al. Prognostic Value of Serum Galectin-3 in Chronic Heart Failure: A Meta-Analysis. Front Cardiovasc Med. 2022;9:783707. DOI:10.3389/ fcvm.2022.783707.
21. Agnello L, Bivona G, Lo Sasso B, et al. Galectin-3 in acute coronary syndrome. Clin Biochem. 2017;50(13-14):797-803. DOI:10.1016/j.clinbiochem.2017.04.018.
22. Ozturk D, Celik O, Satilmis S, et al. Association between serum galectin-3 levels and coronary atherosclerosis and plaque burden/structure in patients with type 2 diabetes mellitus. Coron Artery Dis. 2015;26(5):396-401. DOI:10.1097/MCA.0000000000000252.
23. Sygitowicz G, Maciejak-Jastrzębska A, Sitkiewicz D. The Diagnostic and Therapeutic Potential of Galectin-3 in cardiovascular diseases. Biomolecules. 2021;12(1):46. DOI:10.3390/biom12010046.
24. Li M, Guo K, Huang X, et al. Association Between Serum Galectin-3 Levels and Coronary Stenosis Severity in Patients with Coronary Artery Disease. Front Cardiovasc Med. 2022;9:818162. DOI:10.3389/fcvm.2022.818162.
25. Kook H, Jang DH, Kim JH, et al. Identification of plaque ruptures using a novel discriminative model comprising biomarkers in patients with acute coronary syndrome. Sci Rep. 2020;10(1):20228. DOI:10.1038/s41598-020-77413-3.
26. Eilenberg W, Stojkovic S, Piechota-Polanczyk A, et al. Neutrophil GelatinaseAssociated Lipocalin (NGAL) is Associated with Symptomatic Carotid Atherosclerosis and Drives Pro-inflammatory State In Vitro. Eur J Vasc Endovasc Surg. 2016;51(5):623-31. DOI:10.1016/j.ejvs.2016.01.009.
27. Sahinarslan A, Kocaman SA, Bas D, et al. Plasma neutrophil gelatinase-associated lipocalin levels in acute myocardial infarction and stable coronary artery disease. Coron Artery Dis. 2011;22:333-8. DOI:10.1097/MCA.0b013e3283472a71.
28. Akcay AB, Ozlu MF, Sen N, et al. Prognostic significance of neutrophil gelatinaseassociated lipocalin in ST-segment elevation myocardial infarction. J Investig Med. 2012;60(2):508-13. DOI:10.2310/JIM.0b013e31823e9d86.
29. Зыков М.В., Кашталап В. В., Быкова И. С., и др. Клинический и прогностический уровень липокалина, ассоциированного с нейтрофильной желатиназой у пациентов с инфарктом миокарда с подъемом сегмента ST. Кардиология 2016;56(5):249. DOI:10.18565/cardio.2016.5.24-29.
30. Sivalingam Z, Larsen SB, Grove EL, et al. Neutrophil gelatinase-associated lipocalin as a risk marker in cardiovascular disease. Clin Chem Lab Med. 2017;56(1):5-18. DOI:10.1515/cclm-2017-0120.
31. Katagiri M, Takahashi M, Doi K, et al. Serum neutrophil gelatinase-associated lipocalin concentration reflects severity of coronary artery disease in patients without heart failure and chronic kidney disease. Heart Vessels. 2016;31(10):1595602. DOI:10.1007/s00380-015-0776-8.
32. Woitas RP, Scharnagl H, Kleber ME, et al. Neutrophil gelatinase-associated lipocalin levels are U-shaped in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study-Impact for mortality. PLoS One. 2017;12(2):e0171574. DOI:10.1371/journal.pone.0171574.
33. DeLeon-Pennell KY, Meschiari CA, Jung M, Lindsey ML. Matrix Metalloproteinases in Myocardial Infarction and Heart Failure. Prog Mol Biol Transl Sci. 2017;147:75100. DOI:10.1016/bs.pmbts.2017.02.001.
34. Olejarz W, Łacheta D, Kubiak-Tomaszewska G. Matrix Metalloproteinases as Biomarkers of Atherosclerotic Plaque Instability. Int J Mol Sci. 2020;21(11):3946. DOI: 10.3390/ijms21113946.
35. Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci. 2020;21(24):9739. DOI:10.3390/ijms21249739.
36. Wang X, Shi LZ. Association of matrix metalloproteinase-9 C1562T polymorphism and coronary artery disease: a meta-analysis. J Zhejiang Univ Sci B. 2014;15(3):256-63. DOI:10.1631/jzus.B1300088.
37. Zhang MM, Chang XW, Hao XQ, et al. Association between matrix metalloproteinase 9 C-1562T polymorphism and the risk of coronary artery disease: an update systematic review and meta-analysis. Oncotarget. 2017;9(10):9468-9479. DOI:10.18632/oncotarget.23293.
38. Dorecka M, Francuz T, Garczorz W, et al. The influence of elastin degradation products, glucose and atorvastatin on metalloproteinase-1, -2, -9 and tissue inhibitor of metalloproteinases-1, -2, -3 expression in human retinal pigment epithelial cells. Acta Biochim Pol. 2014;61(2):265-70. DOI:10.18388/abp.2014_1894.
39. Blum A. HMG-CoA reductase inhibitors (statins), inflammation, and endothelial progenitor cells-New mechanistic insights of atherosclerosis. Biofactors. 2014;40(3):295-302. DOI:10.1002/biof.1157.