Статья
Кишечная микробиота и сердечно-сосудистые заболевания: механизмы влияния и возможности коррекции
Термин «микробиота» используется для обозначения характерного микробного сообщества, занимающего определенную среду обитания с установленными физико-химическими свойствами и формированием специфических экологических ниш. Микробиота кишечника взрослого человека разнообразна и в основном состоит из бактерий филумов Bacteroidetes и Firmicutes. Связь между микробиотой кишечника и сердечно-сосудистыми заболеваниями (ССЗ) активно обсуждается. Быстрый прогресс в этой области объясняется развитием методов секвенирования нового поколения и использованием в экспериментах мышей со стерильным кишечником. Публикуется все больше данных, о влиянии микробиоты на развитие и течение гипертонической болезни, ишемической болезни сердца (ИБС), гипертрофии миокарда, хронической сердечной недостаточности (ХСН) и фибрилляции предсердий (ФП). В качестве инструментов коррекции структуры микробиоты кишечника макроорганизма успешно применяются диетотерапия, антибактериальные препараты, про- и пребиотики. Появляются данные о положительном влиянии методов коррекции кишечной микробиоты на течение заболеваний сердечно-сосудистой системы. Коррекция микробиоты кишечника в эксперименте на крысах с окклюзией коронарного кровотока демонстрирует значимое уменьшение площади некротизированного участка. При исследовании с участием больных, страдающих ХСН, выявлено значимое снижение уровня мочевой кислоты, высокочувствительного С-реактивного белка и креатинина. Помимо структурных и лабораторных изменений у больных ССЗ при модификации микробиоты кишечника, выявлено также влияние на течение артериальной гипертензии. Коррекция микробиоты кишечника благотворно сказывается на течении ФП. Предполагаем, что дальнейшее активное изучение вопросов влияния и взаимодействия микробиоты кишечника и макроорганизма могут в обозримом будущем внести значительные коррективы в подходы к лечению таких больных.
1. Mardis ER. Next-generation DNA sequencing methods. Annual review of genomics and human genetics. 2008;9:387-402. DOI:10.1146/ANNUREV.GENOM.9.081307.164359.
2. Bhattarai Y, Kashyap PC. Germ-Free Mice Model for Studying Host-Microbial Interactions. Methods Mol Biol. 2016;1438:123-35. DOI:10.1007/978-1-4939-3661-8_8.
3. Avershina E, Lundgård K, Sekelja M, et al. Transition from infant-to adult-like gut microbiota. Environ Microbiol. 2016;18(7):2226-36. DOI:10.1111/1462-2920.13248.
4. Eckburg PB, Bik EM, Bernstein CN, et al. Microbiology: Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635-8. DOI:10.1126/SCIENCE.1110591.
5. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65. DOI:10.1038/nature08821.
6. Nagao-Kitamoto H, Kitamoto S, Kuffa P, Kamada N. Pathogenic role of the gut microbiota in gastrointestinal diseases. Intest Res. 2016;14(2):127. DOI:10.5217/IR.2016.14.2.127.
7. Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best Practice & Research Clinical Gastroenterology. 2013;27(1):73-83. DOI:10.1016/J.BPG.2013.03.007.
8. Gurung M, Li Z, You H, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020;51:102590. DOI:10.1016/j.ebiom.2019.11.051.
9. Tang WHW, Bäckhed F, Landmesser U, Hazen SL. Intestinal Microbiota in Cardiovascular Health and Disease: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019;73(16):2089-105. DOI:10.1016/J.JACC.2019.03.024.
10. Cui L, Zhao T, Hu H, Zhang W, Hua X. Association Study of Gut Flora in Coronary Heart Disease through High-Throughput Sequencing. Bio Med Res Int. 2017;2017:3796359. DOI:10.1155/2017/3796359.
11. Pasini E, Aquilani R, Testa C, et al. Pathogenic Gut Flora in Patients With Chronic Heart Failure. JACC: Heart Failure. 2016;4(3):220-7. DOI:10.1016/J.JCHF.2015.10.009.
12. Zuo K, Li J, Li K, et al. Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation. Giga Science. 2019;8(6):1-17. DOI:10.1093/GIGASCIENCE/GIZ058.
13. Zuo K, Li J, Wang P, et al. Duration of Persistent Atrial Fibrillation Is Associated with Alterations in Human Gut Microbiota and Metabolic Phenotypes. mSystems. 2019;4(6). DOI:10.1128/MSYSTEMS.00422-19.
14. Sayin SI, Wahlström A, Felin J, et al. Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-beta-muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metab. 2013;17(2):225-35. DOI:10.1016/J.CMET.2013.01.003.
15. Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 2019;20(4):461-72. DOI:10.1007/S11154-019-09512-0.
16. Díez-ricote L, Ruiz-Valderrey P, Micó V, et al. Trimethylamine n-Oxide (TMAO) Modulates the Expression of Cardiovascular Disease-Related microRNAs and Their Targets. Int J Mol Sci. 2021;22(20):11145. DOI:10.3390/IJMS222011145.
17. Hill C, Guarner F, Reid G, et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506-14. DOI:10.1038/nrgastro.2014.66.
18. Ивашкин В.Т., Маев И.В., Абдулганиева Д.И., и др. Практические рекомендации Научного сообщества по содействию клиническому изучению микробиома человека (НСОИМ) и Российской гастроэнтерологической ассоциации (РГА) по применению пробиотиков для лечения и профилактики заболеваний гастроэнтерологического профиля у взрослых. Российский Журнал Гастроэнтерологии, Гепатологии, Колопроктологии. 2020;30(2):76-89. DOI:10.22416/1382-4376-2020-30-2-76-89.
19. Gibson GR, Probert HM, Loo J Van, et al. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev. 2004;17(2):259-75. DOI:10.1079/NRR200479.
20. Gibson GR, Roberfroid MB. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. J Nutr. 1995;125(6):1401-12. DOI:10.1093/JN/125.6.1401.
21. Roberfroid M. Prebiotics: The Concept Revisited. J Nutr. 2007;137(3):830S-7S. DOI:10.1093/JN/137.3.830S.
22. Niness KR. Inulin and Oligofructose: What Are They? J Nutr. 1999;129(7):1402S-6S. DOI:10.1093/JN/129.7.1402S.
23. Tomasik PJ, Tomasik P. Probiotics and Prebiotics. Cereal Chemistry. 2003;80(2):113-7. DOI:10.1094/CCHEM.2003.80.2.113.
24. Gargari BP, Dehghan P, Aliasgharzadeh A, Jafar-Abadi MA. Effects of High Performance Inulin Supplementation on Glycemic Control and Antioxidant Status in Women with Type 2 Diabetes. Diabetes Metab J. 2013;37(2):140-8. DOI:10.4093/DMJ.2013.37.2.140.
25. Miller LE, Ouwehand AC, Ibarra A. Effects of probiotic-containing products on stool frequency and intestinal transit in constipated adults: systematic review and meta-analysis of randomized controlled trials. Ann Gastroenterol. 2017;30(6):629. DOI:10.20524/AOG.2017.0192.
26. Asha MZ, Khalil SFH. Efficacy and Safety of Probiotics, Prebiotics and Synbiotics in the Treatment of Irritable Bowel Syndrome: A systematic review and meta-analysis. Sultan Qaboos Univ Med J. 2020;20(1):e13. DOI:10.18295/SQUMJ.2020.20.01.003.
27. Derwa Y, Gracie DJ, Hamlin PJ, Ford AC. Systematic review with meta-analysis: the efficacy of probiotics in inflammatory bowel disease. Aliment Pharmacol Ther. 2017;46(4):389-400. DOI:10.1111/apt.14203.
28. Ganji-Arjenaki M, Rafieian-Kopaei M. Probiotics are a good choice in remission of inflammatory bowel diseases: A meta analysis and systematic review. J Cel Physiol. 2018;233(3):2091-103. DOI:10.1002/JCP.25911.
29. Oka A, Sartor RB. Microbial-Based and Microbial-Targeted Therapies for Inflammatory Bowel Diseases. Dig Dis Sci. 2020;65(3):757-88. DOI:10.1007/S10620-020-06090-Z/FIGURES/1.
30. Naruszewicz M, Johansson ML, Zapolska-Downar D, Bukowska H. Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am J Clin Nutr. 2002;76(6):1249-55. DOI:10.1093/AJCN/76.6.1249.
31. Sun J, Buys N. Effects of probiotics consumption on lowering lipids and CVD risk factors: A systematic review and meta-analysis of randomized controlled trials. Ann Med. 2015;47(6):430-40. DOI:10.3109/07853890.2015.1071872.
32. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012; 490(7418):55-60. DOI:10.1038/nature11450.
33. Ryan PM, Ross RP, Fitzgerald GF, et al. Functional food addressing heart health: Do we have to target the gut microbiota? Curr Opin Clin Nutr Metab Care. 2015;18(6):566-71. DOI:10.1097/MCO.0000000000000224.
34. Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012;9(10):577-89. DOI:10.1038/nrgastro.2012.156.
35. Zhu Y, Michelle Luo T, Jobin C, Young HA. Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett. 2011;309(2):119-27. DOI:10.1016/J.CANLET.2011.06.004.
36. Merra G, Noce A, Marrone G, et al. Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients. 2020;13(1):7. DOI:10.3390/NU13010007.
37. Di Renzo L, Cioccoloni G, Falco S, et al. Influence of FTO rs9939609 and Mediterranean diet on body composition and weight loss: A randomized clinical trial NCT01890070 NCT. J Transl Med. 2018;16(1):1-12. DOI:10.1186/S12967-018-1680-7.
38. den Besten G, Van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325-40. DOI:10.1194/JLR.R036012.
39. Galisteo M, Duarte J, Zarzuelo A. Effects of dietary fibers on disturbances clustered in the metabolic syndrome. J Nutr Biochem. 2008;19(2):71-84. DOI:10.1016/J.JNUTBIO.2007.02.009.
40. Furuta GT, Turner JR, Taylor CT, et al. Hypoxia-Inducible Factor 1–Dependent Induction of Intestinal Trefoil Factor Protects Barrier Function during Hypoxia. J Exp Med. 2001;193(9):1027-34. DOI:10.1084/JEM.193.9.1027.
41. Martin-Gallausiaux C, Marinelli L, Blottière HM, et al. SCFA: mechanisms and functional importance in the gut. Proc Nutr Soc. 2021;80(1):37-49. DOI:10.1017/S0029665120006916.
42. Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013;5(4):1417-35. DOI:10.3390/nu5041417.
43. Astudillo AA, Mayrovitz HN. The Gut Microbiome and Cardiovascular Disease. Cureus. 2021;13(4). DOI:10.7759/CUREUS.14519.
44. Kasahara K, Krautkramer KA, Org E, et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol. 2018;3(12):1461-71. DOI:10.1038/s41564-018-0272-x.
45. Nogal A, Valdes AM, Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes. 2021;13(1):1-24. DOI:10.1080/19490976.2021.1897212.
46. Yang T, Santisteban MM, Rodriguez V, et al. Gut microbiota dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331. DOI:10.1161/HYPERTENSIONAHA.115.05315.
47. Кашух Е.А., Полуэктова Е.А., Кудрявцева А.В., и др. Влияние рифаксимина и мультиштаммового пробиотика на кишечный микробиом и показатели сердечно-сосудистого риска у пациентов с ишемической болезнью сердца. Российский Журнал Гастроэнтерологии, Гепатологии, Колопроктологии. 2019;29(4):38-49. DOI:10.22416/1382-4376-2019-29-4-38-49.
48. Stone AFM, Mendall MA, Kaski JC, et al. Effect of Treatment for Chlamydia pneumoniae and Helicobacter pylori on Markers of Inflammation and Cardiac Events in Patients With Acute Coronary Syndromes. Circulation. 2002;106(10):1219-23. DOI:10.1161/01.CIR.0000027820.66786.CF.
49. Lam V, Su J, Koprowski S, et al. Intestinal microbiota determine severity of myocardial infarction in rats. The FASEB J. 2012;26(4):1727-35. DOI:10.1096/FJ.11-197921.
50. McCafferty K, Byrne C, Yaqoob M, et al. Intestinal Microbiota Determine Severity of Myocardial Infarction in Rats. FASEB J. 2012;26(11):4388-88. DOI:10.1096/FJ.12-1102LTR.
51. Tang TWH, Chen HC, Chen CY, et al. Loss of Gut Microbiota Alters Immune System Composition and Cripples Postinfarction Cardiac Repair. Circulation. 2019;139(5):647-59. DOI:10.1161/CIRCULATIONAHA.118.035235.
52. Hu Y, Pan Z, Huang Z, et al. Gut Microbiome-Targeted Modulations Regulate Metabolic Profiles and Alleviate Altitude-Related Cardiac Hypertrophy in Rats. Microbiol Spectr. 2022;10(1) :e0105321. DOI:10.1128/spectrum.01053-21.
53. Bartolomaeus H, Balogh A, Yakoub M, et al. Short-Chain Fatty Acid Propionate Protects From Hypertensive Cardiovascular Damage. Circulation. 2019;139(11):1407-21. DOI:10.1161/CIRCULATIONAHA.118.036652.
54. Costanza AC, Moscavitch SD, Faria Neto HCC, Mesquita ET. Probiotic therapy with Saccharomyces boulardii for heart failure patients: A randomized, double-blind, placebo-controlled pilot trial. Int J Cardiol. 2015;179:348-50. DOI:10.1016/J.IJCARD.2014.11.034.
55. Tabata T, Yamashita T, Hosomi K, et al. Gut microbial composition in patients with atrial fibrillation: effects of diet and drugs. Heart Vessels. 2021;36(1):105-14. DOI:10.1007/S00380-020-01669-Y.
56. Yu L, Meng G, Huang B, et al. A potential relationship between gut microbes and atrial fibrillation: Trimethylamine N-oxide, a gut microbe-derived metabolite, facilitates the progression of atrial fibrillation. Int J Cardiol. 2018;255:92-8. DOI:10.1016/J.IJCARD.2017.11.071.
57. Lin K, Wang X, Li J, et al. Anti-atherosclerotic effects of geraniin through the gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway in mice. Phytomedicine. 2022; 101:154104. DOI:10.1016/J.PHYMED.2022.154104.
58. Lama S, Monda V, Rizzo MR, et al. Cardioprotective Effects of Taurisolo® in Cardiomyoblast H9c2 Cells under High-Glucose and Trimethylamine N-Oxide Treatment via de Novo Sphingolipid Synthesis. Oxid Med Cell Longev. 2020;2020:2961406. DOI:10.1155/2020/2961406.
59. Annunziata G, Ciampaglia R, Maisto M, et al. Taurisolo®, a grape pomace polyphenol nutraceutical reducing the levels of serum biomarkers associated with atherosclerosis. Front Cardiovasc Med. 2021;8:732. DOI:10.3389/FCVM.2021.697272/BIBTEX.
60. Lapi D, Stornaiuolo M, Sabatino L, et al. The Pomace Extract Taurisolo Protects Rat Brain From Ischemia-Reperfusion Injury. Front Cell Neurosci. 2020;14:3. DOI:10.3389/FNCEL.2020.00003/ BIBTEX.
61. Lim T, Ryu J, Lee K, et al. Protective Effects of Black Raspberry (Rubus occidentalis) Extract against Hypercholesterolemia and Hepatic Inflammation in Rats Fed High-Fat and High-Choline Diets. Nutrients. 2020;12(8):2448. DOI:10.3390/NU12082448.
62. Ziganshina EE, Sharifullina DM, Lozhkin AP, et al. Bacterial Communities Associated with Atherosclerotic Plaques from Russian Individuals with Atherosclerosis. PloS One. 2016;11(10):e0164836. DOI:10.1371/journal.pone.0164836.
63. Liu F, Fan C, Zhang L, et al. Alterations of Gut Microbiome in Tibetan Patients With Coronary Heart Disease. Front Cell Infect Microbiol. 2020;10:373. DOI:10.3389/fcimb.2020.00373.
64. Toya T, Corban MT, Marrietta E, et al. Coronary artery disease is associated with an altered gut microbiome composition. PLoS One. 2020;15(1):e0227147. DOI:10.1371/journal.pone.0227147.
65. Beale AL, O’Donnell JA, Nakai ME, et al. The Gut Microbiome of Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc. 2021;10(13):e020654. DOI:10.1161/JAHA.120.020654.
66. Sun W, Du D, Fu T, et al. Alterations of the Gut Microbiota in Patients With Severe Chronic Heart Failure. Front Microbiol. 2021;12:813289. DOI:10.3389/FMICB.2021.813289.
67. Louca P, Nogal A, Wells PM, et al. Gut microbiome diversity and composition is associated with hypertension in women. J Hypertens. 2021;39(9):1810-6. DOI:10.1097/HJH.0000000000002878.
68. Zuo K, Li J, Li K, et al. Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation. Giga Science. 2019;8(6):1-17. DOI:10.1093/GIGASCIENCE/GIZ058.
69. Zhang Y, Sun D, Zhao X, et al. Bacteroides fragilis prevents aging-related atrial fibrillation in rats via regulatory T cells-mediated regulation of inflammation. Pharmacol Res. 2022;177:106141. DOI:10.1016/J.PHRS.2022.106141.