Цель. Изучить влияние на уровень свободных радикалов кислорода, генерируемых фагоцитами крови и изолированными нейтрофилами пациентов с сердечной недостаточностью (СН), тиазидоподобного диуретика индапамида (Ind). Материал и методы. В пробах цельной крови и на изолированных нейтрофилах, полученных от 15 пациентов с СН II–III функционального класса по NYHA, оценивали образование радикалов кислорода на хемилюминометре «Биотокс-7» в присутствии люминофоров – люцигенина (30 мкМ) и люминола (50 мкМ). В качестве стандартных стимуляторов фагоцитов крови и нейтрофилов применяли бактериальный трипептид (FMLP, 3 мкМ) и форболовый эфир (РМА, 1 мкМ). Образование супероксид – анионов (О2-) и гидроксил-радикалов регистрировали в непрерывном режиме во времени в количестве импульсов в сек и оценивали по интегральным значениям хемилюминесценции (светосумма за 10 мин). Ингибирующий эффект различных концентраций индапамида оценивали как выраженность снижения (%) от максимального свечения, вызванного стандартными стимуляторами. Изучена антиоксидантная активность индапамида в бесклеточной среде, генерирующей гидроксил-радикалы. Статистическая обработка результатов проведена с использованием программы SigmaPlot. Результаты. Исходно в крови пациентов с СН были обнаружены предактивированные (праймированные) фагоциты, о чем свидетельствует «спонтанное» образование супероксид-анионов, которое возникает в результате адгезии нейтрофилов на стенках кюветы. РМА вызывал резкое усиление образования радикалов кислорода. В суспензиях нейтрофилов индапамид концентрационно-зависимым образом (0,5–2 мкМ) на максимуме ответа на РМА снижал уровень супероксид анионов до базальных значений. Аналогичный эффект индапамида наблюдался в образцах цельной крови пациентов с СН. FMLP увеличивал генерацию радикалов кислорода и потенцировал последующий ответ фагоцитов на PMA. Индапамид (2 мкМ), добавленный после FMLP и РМА, снижал уровень супероксид анионов до исходных значений, наблюдаемых в отсутствие стимуляторов. Первоначальная обработка образцов крови пациентов с СН индапамидом снижала спонтанное образование радикалов кислорода, а также амплитуды последующих ответов на FMLP и РМА. Антиоксидантный эффект индапамида (10 мкМ) наблюдался и в бесклеточной системе, что свидетельствует о его прямом взаимодействии с радикалами кислорода. заключение. Индапамид в низких концентрациях оказывает выраженный антиоксидантный эффект, что может быть значимым при лечении пациентов с СН.
Асташкин Е. И., Глезер М. Г., Петров Е. А., Соколова И. Н. ВЛИЯНИЕ ИНДАПАМИДА НА УРОВЕНЬ РАДИКАЛОВ КИСЛОРОДА, ПРОДУЦИРУЕМЫХ ФАГОЦИТАМИ КРОВИ ПАЦИЕНТОВ С СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТЬЮ. Российский кардиологический журнал. 2012;(4):43-47.
1. Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999; 79 (1): 215–62.
2. Santos C. X. C., Anilkumar N., Zhang M., et al. Redox signaling in cardiac myocytes. Free Radic Biol Med. 2011; 50 (7): 777–93.
3. Sirker A., Zhang M., Murdoch C. et al. Involvement of NADPH oxidases in cardiac remodeling and heart failure Am J Nephrol. 2007; 27 (6): 649–60.
4. Jordan J. E., Zhi-Qing Zhao, Vinten-Johansen J. The role of neutrophils in myocardial ischemia–reperfusion injury. Cardiovasc. Res., 1999, 43, 860–78.
5. Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc. Res. 2004; 61 (3): 481–97.
6. National guidelines and OSSN for the diagnosis and treatment of chronic heart failure (third revision) Heart failure. 2010; 11 (1):3–62 Russian (Национальные рекомендации ВНОК И ОССН по диагностике и лечению ХСН (третий пересмотр) Сердечная Недостаточность. 2010; 11 (1): 3–62).
7. Viswanathan G. Neutrophils and myocardial injury: Cause or Effect-That is the Question! South. Med. J. 2008; 101 (1): 7–8.
8. Rashidi F., Rashidi A., Golmohamadi A., et al. Does absolute neutrophilia predict early congestive heart failure after acute myocardial infarction? A cross-sectional study. South. Med. J. 2008; 101 (1): 19–23.
9. Sciarretta S., Palano F., Tocci G., et al. Antihypertensive treatment and development of heart failure in hypertension: a Bayesian network meta-analysis of studies in patients with hypertension and high cardiovascular risk. Arch Intern Med. 2011;171 (5): 384–94.
10. Waeber B., Rotaru C., Feihl F. Position of indapamide, a diuretic with vasorelaxant activities, in antihypertensive therapy. Expert Opin Pharmacother. 2012; 13 (10): 1515–26.
11. Uehara Y., Shirahase H., Nagata T., et al. Radical scavengers of indapamide in prostacyclin synthesis in rat smooth muscle cell. Hypertension. 1990; 15 (2):216–24.
12. Tamura A., Seto T., Fujii T. Antioxidant activity of indapamide and its metabolites. Chem Pharm Bull (Tokyo). 1990; 38 (1): 255–7.
13. Uehara Y., Kawabata Y., Shirahase H. et al. Oxygen radical scavengers and renal protection by indapamide diuretic in salt-induced hypertention of Dahl strain rats. J Cardiovasc Pharmacol. 1993; 22, Suppl 6: S42–6.
14. Vergely C., Walker M. K., Zeller M. et al. Antioxidant properties of indapamide, 5-OH indapamide and hydrochlorothiazide evaluated by oxygen-radical absorbing capacity and electron paramagnetic resonance Mol.Cell Biochem. 1998; 178 (1–2): 151–5.
15. Janega P., Kojsova S., Jendekova L. et al. Indapamide-Induced Prevention of Myocardial Fibrosis in Spontaneous Hypertension Rats Is Not Nitric Oxide-Related. Physiol Res. 2007; 56 (6): 825–8.