Статья
Роль метаболизма гомоцистеина в развитии эндотелиальной дисфункции и артериальной гипертензии у больных множественной миеломой
Статья посвящена современному представлению о развитии эндотелиальной дисфункции, роли гипергомоцистеинемии и, как следствие, артериальной гипертензии у пациентов с множественной миеломой, получающих полихимиотерапию. Учитывая, что возможности стандартного обследования не позволяют идентифицировать субклиническую дисфункцию эндотелия, необходимо использование специфических методик, в частности определение уровня гомоцистеина для мониторинга функции эндотелиоцитов.Целью данного обзора является обобщение современных представлений об этиологии артериальной гипертензии и перспективах выявления ранних, субклинических изменений функции эндотелия, в т.ч. у пациентов с множественной миеломой.Оценка наличия эндотелиальной дисфункции может быть полезна для определения именно субклинических стадий сердечно-сосудистой патологии с целью стратификации риска развития сердечно-сосудистых осложнений у пациентов, получающих химиотерапевтическое лечение.
1. Менделеева Л. П., Вотякова О. М., Рехтина И. Г. и др.; Ассоциация онкологов России, Национальное гематологическое общество, Общество онкогематологов. Российские клинические рекомендации по диагностике и лечению множественной миеломы. Москва. 2020. 222 с.
2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: Cancer J Clin. 2016;66:7-30. doi:10.3322/caac.21332.
3. Давыдкин И. Л., Мордвинова Е. В., Кузьмина Т. П. Инфекционные осложнения при множественной миеломе в условиях современной эпидемиологической обстановки: обзор литературы. Клиническая онкогематология. 2021;14(3):386-90. doi:10.21320/2500-2139-2021-14-3-386-390.
4. Heitner SB, Minnier J, Naher A, et al. Bortezomib-based Chemotherapy for Multiple Myeloma Patients Without Comorbid Cardiovascular Disease Shows No Cardiotoxicity. Scott Clinical Lymphoma, Myeloma & Leukemia. 2018;18(12):796-802. doi:10.1016/j.clml.2018.08.004.
5. Berliner D, Beutel G, Bauersachs J, et al. Echocardiography and biomarkers for the diagnosis of cardiotoxicity. Herz. 2020;45(7):637-44. doi:10.1007/s00059-020-04957-5.
6. Kistler KD, Kalman J, Sahni G, et al. Incidence and Risk of Cardiac Events in Patients With Previously Treated Multiple Myeloma Versus Matched Patients Without Multiple Myeloma: An Observational, Retrospective, Cohort Study Clinical Lymphoma. Myeloma & Leukemia.2017;17(2):89-96.e3. doi:10.1016/j.clml.2016.11.009.
7. Khan AA, Thomas GN, Lip GYH, et al. Endothelial function in patients with atrial Fibrillation. Annals of Medicine. 2020;52(1-2):1-11. doi:10.1080/07853890.2019.1711158.
8. Dawes MG, Bartlett G, Coats AJ, et al. Comparing the effects of white coat hypertension and sustained hypertension on mortality in a UK primary care setting. Ann Fam Med. 2008;6(5):390-6. doi:10.1370/afm.865.
9. Konukoglu D, Uzun H. Endothelial Dysfunction and Hypertension. Adv Exp Med Biol — Advances in Internal Medicine. 2017;956:511-40. doi:10.1007/5584_2016_90.
10. Davydkin IL, Kuzmina TP, Naumova KV, et al. Endothelial dysfunction in patients with lymphoproliferative disorders and its changes in the course of polychemotherapy. Russian Open Medical Journal. 2020;9:e0309. doi:10.15275/rusomj.2020.0309.
11. Маргиева Т. В., Сергеева Т. В. Участие маркёров эндотелиальной дисфункции в патогенезе хронического гломерулонефрита. Вопр. соврем. педиатр. 2006;5(3):22-30.
12. George EM, Granger JP. Endothelin: key mediator of hypertension in preeclampsia. Am. J. Hypertens. 2011;24(29):964-9. doi:10.1038/ajh.2011.99.
13. Rosenthal A, Luthi J, Behlolavek M. Carfilzomib and the cardiorenal system in myeloma: an endothelial effect? Blood Cancer J. 2016;6:e384. doi:10.1038/bcj.2015.112.
14. Cornell RF, Ky B, Weiss BM, et al. Prospective study of cardiac events during protea-some inhibitor therapy for relapsed multiple myeloma. J Clin Oncol. 2019:JCO.19.00231. doi:10.1200/JCO.19.00231.
15. Kearney PM, Whelton M, Reynolds K, et al. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365(9455):217-23. doi:10.1016/S0140-6736(05)17741-1.
16. Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2224-60. doi:10.1016/S0140-6736(12)61766-8.
17. Levy D, Larson MG, Vasan RS, et al. The progression from hypertension to congestive heart failure. JAMA. 1996;275(20):1557-62.
18. Summary of the 2007 European Society of Hypertension (ESH) and European Society of Cardiology (ESC) Guidelines for the Management of Arterial Hypertension. Vasc Health Risk Manag. 2007;3(6):783-95.
19. Rossman MJ, Kaplon RE, Hill SD, et al. Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function. Am J Physiol Circ Physiol. 2017;313(5):H890-H895. doi:10.1152/ajpheart.00416.2017.
20. Hohensinner PJ, Kaun C, Buchberger E, et al. Age intrinsic loss of telomere protection via TRF1 reduction in endothelial cells. Biochim Biophys Acta — Mol Cell Res. 2016;1863(2):360-7. doi:10.1016/J.BBAMCR.2015.11.034.
21. Donato AJ, Morgan RG, Walker AE, et al. Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol. 2015;89(Pt B):122-35. doi:10.1016/j.yjmcc.2015.01.021.
22. Uryga AK, Bennett MR. Ageing induced vascular smooth muscle cell senescence in atherosclerosis. J Physiol. 2016;594(8):2115-24. doi:10.1113/JP270923.
23. Heckmann MB, Doroudgar Sh, Katus HA, et al. Cardiovascular adverse events in multiple myeloma patients. J Thorac Dis. 2018;10(Suppl 35):S4296-S4305. doi:10.21037/jtd.2018.09.87.
24. Castro MM, Tanus-Santos JE. Inhibition of matrix metalloproteinases (MMPs) as a potential strategy to ameliorate hypertension-induced cardiovascular alterations. Curr Drug Targets. 2013;14(3):335-43.
25. Harvey A, Montezano AC, Lopes RA, et al. Vascular Fibrosis in Aging and Hypertension: Molecular Mechanisms and Clinical Implications. Can J Cardiol. 2016;32:659-68.
26. Theocharis AD, Skandalis SS, Gialeli C, et al. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016;97:4-27. doi:10.1016/j.addr.2015.11.001.
27. Kesh K, Subramanian L, Ghosh N, et al. Association of MMP7 -181A^G promoter polymorphism with gastric cancer risk: Influence of nicotine in differential allele-specific transcription via increased phosphorylation of cAMP-response element-binding protein (CREB). J Biol Chem. 2015;290:14391-406. doi:10.1074/jbc.M114.630129.
28. Radosinska J, Barancik M, Vrbjar N. Heart failure and role of circulating MMP-2 and MMP-9. Panminerva Med. 2017;59:241-53. doi:10.23736/S0031-0808.17.03321-3.
29. Yabluchanskiy A, Ma Y, Iyer RP, et al. Matrix Metalloproteinase-9: Many Shades of Function in Cardiovascular Disease. Physiology. 2013;28:391-403. doi:10.1152/physiol.00029.2013.
30. Raffetto JD, Khalil RA. Matrix Metalloproteinases and their Inhibitors in Vascular Remodeling and Vascular Disease. Biochem Pharmacol. 2008;75:346-59. doi:10.1016/j.bcp.2007.07.004.
31. Martinez-Lemus LA, Galinanes EL. Matrix metalloproteinases and small artery remodeling. Drug Discov Today Dis Models. 2011;8:21-8. doi:10.1016/j.ddmod.2011.06.002.
32. Rolland PH, Friggi A, Barlatier A, et al. Hyperhomocysteinemia-induced vascular damage in the minipig. Captopril-hydrochlorothiazide combination prevents elastic alterations. Circulation. 1995;91:1161-74. doi:10.1161/01.cir.91.4.1161.
33. Yi X, Zhou Y, Jiang D, et al. Efficacy of folic acid supplementation on endothelial function and plasma homocysteine concentration in coronary artery disease: a metaanalysis of randomized controlled trials. Exp Ther Med. 2014;7(5):1100-10. doi:10.3892/etm.2014.1553.
34. Lim U, Cassano PA. Homocysteine and blood pressure in the Third National Health and Nutrition Examination Survey, 1988-1994. Am J Epidemiol. 2002;156:1105-13. doi:10.1093/aje/kwf157.
35. Vianna AC, Mocelin AJ, Matsuo T, et al. Uremic hyperhomocysteinemia: A randomized trial of folate treatment for the prevention of cardiovascular events. Hemodial Int. 2007;11:210-6. doi:10.1111/j.1542-4758.2007.00171.x.
36. Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ. 2002;325(7374):1202-6. doi:10.1136/bmj.325.7374.1202.
37. Wang J, Du J, Fan R. Exploration of the risk factors of essential hypertension with hyperhomocysteinemia: A hospital-based study and nomogram analysis. Clinics (Sao Paulo). 2021;76:e2233. doi:10.6061/clinics/2021/e2233.
38. Yang Q, He GW. Imbalance of Homocysteine and H2S: Significance, Mechanisms, and Therapeutic Promise in Vascular Injury. Oxidative Medicine and Cellular Longevity. 2019;7629673. doi:10.1155/2019/7629673.
39. Kumar M, Mahajan A, Sapehia D, et al. Effects of altered maternal folate and vitamin B12 on neurobehavioral outcomes in F1 male mice. Brain Res Bull. 2019;153:93-101. doi:10.1016/j.brainresbull.2019.07.031.
40. Kumar M, Sandhir R. Hydrogen Sulfide Attenuates Hyperhomocysteinemia-Induced Mitochondrial Dysfunctions in Brain. Mitochondrion. 2019;50:158-69. doi:10.1016/j.mito.2019.11.004.
41. Sen U, Sathnur PB, Kundu S, et al. H2S generation by cbs, cse, and 3mst gene therapy improves ex vivo renovascular relaxation in hyperhomocysteinemia. American Journal of Physiology-Cell Physiology. 2012;303(1):C41-51. doi:10.1152/ajpcell.00398.2011.
42. Christine CW, Auinger P, Joslin A, et al. Vitamin B12 and Homocysteine Levels Predict Different Outcomes in Early Parkinson's Disease. Mov Disord. 2018;33(5):762-70. doi:10.1002/mds.27301.
43. MartbCarvajal AJ, Sola I, Lathyris D, et al. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev. 2017;8(8):CD006612. doi:10.1002/14651858.
44. Zhang Q, Li S, Li L, et al. Metformin Treatment and Homocysteine: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2016;8(12):798. doi:10.3390/nu8120798.
45. Kawada T. Smoking, hyperhomocysteinemia, metabolic syndrome, and cardiovascular risk. Nutrition. 2021;81:111031. doi:10.1016/j.nut.2020.111031.
46. Kang SS, Rosenson RS. Analytic Approaches for the Treatment of Hyperhomocysteinemia and Its Impact on Vascular Disease. Cardiovasc Drugs Ther. 2018;32(2):233-40. doi:10.1007/s10557-018-6790-1.
47. Van Meurs JB, Pare G, Schwartz SM, et al. Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease. Am J Clin Nutr. 2013;98(3):668-76. doi:10.3945/ajcn.112.044545.
48. Klerk M, Verhoef P, Clarke R, et al. MTHFR 677C-->T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA. 2002;288(16):2023-31. doi:10.1001/jama.288.16.2023.
49. Harmon DL, Shields DC, Woodside JV, et al. Methionine synthase D919G polymorphism is a significant but modest determinant of c irculating homocysteine concentrations. Genet Epidemiol. 1999;17(4):298-309. doi:10.1002/(SICI)1098-2272(199911)17:43.0.CO;2-V.
50. Gaughan DJ, Kluijtmans LA, Barbaux S, et al. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis. 2001;157(2):451-6. doi:10.1016/s0021-9150(00)00739-5.