Статья
Эмпаглифлозин: путь от контроля гликемии к снижению сердечно-сосудистой смертности и госпитализаций по причине сердечной недостаточности
В исследованиях EMPA-REG OUTCOME, CANVAS и DECLARE-TIMI 58 у пациентов с сахарным диабетом 2 типа и установленными сердечно-сосудистыми заболеваниями или факторами сердечно-сосудистого риска на фоне ингибиторов натрий-глюкозного котранспортера 2 типа (иНГЛТ2) по сравнению с плацебо было продемонстрировано снижение риска неблагоприятных сердечно-сосудистых осложнений и развития или ухудшения течения хронической сердечной недостаточности без учащения случаев гипогликемии. К настоящему времени описаны различные механизмы действия иНГЛТ2, которые рассматриваются с позиции их влияния на течение и прогноз хронической сердечной недостаточности. В исследовании EMPEROR-Reduced в группе пациентов, получавших эмпаглифлозин, было показано значительное снижение риска смерти от сердечно-сосудистых причин и госпитализаций по поводу сердечной недостаточности, независимо от наличия сахарного диабета 2 типа.
1. McDonagh TA, Metra M, Adamo M, et al.; ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599-726. doi:10.1093/eurheartj/ehab368.
2. American Diabetes Association. Standards of Medical Care in Diabetes — 2014. Diabetes Care. 2014; 37(Supplement 1):S14-S80. doi:10.2337/dc14-S014.
3. Сахарный диабет 2 типа у взрослых. https://cr.minzdrav.gov.ru/recomend/290_1.
4. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под редакцией И. И. Дедова, М. В. Шестаковой, А. Ю. Майорова, 10-й выпуск, Москва 2021 г.
5. Kannel WB, Hjortland M, Castelli WP, et al. Role diabetes in congestive heart failure: Framingham study. Am J Cardiol. 1974;34(1):29-34. doi:10.1016/0002-9149(74)90089-7.
6. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis epidemiology, pathophysiology, and management. JAMA. 2002;287:2570-81. doi:10.1001/jama.287.19.2570.
7. Emerging Risk Factors Collaboration, Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215-22. doi:10.1016/S0140-6736(10)60484-9. Erratum in: Lancet. 2010;376(9745):958.
8. Holman RR, Paul SK, Bethel MA, et al. 10-Year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577-89. doi:10.1056/NEJMoa0806470.
9. White WB, Cannon CP, Heller SR, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369:1327-35. doi:10.1056/NEJMoa1305889.
10. Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317-26. doi:10.1056/NEJMoa1307684.
11. Green JB, Bethel MA, Armstrong PW, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373:232-42. doi:10.1056/NEJMoa1501352.
12. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117-28. doi:10.1056/NEJMoa1504720.
13. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644-57. doi:10.1056/NEJMoa1611925.
14. Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347-57. doi:10.1056/NEJMoa1812389.
15. Cannon CP, Pratley R, Dagogo-Jack S, et al. for the VERTIS CV Investigators. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N Engl J Med. 2020;383:1425-35. doi:10.1056/NEJMoa2004967.
16. Zinman B, Inzucchi SE, Lachin JM, et al. Rationale, design, and baseline characteristics of a randomized, placebocontrolled cardiovascular outcome trial of empagliflozin (EMPA-REG OUTCOME). Cardiovasc Diabetol. 2014;13:102. doi:10.1186/1475-2840-13-102.
17. Tikkanen I, Chilton R, Johansen OE, et al. Potential role of sodium glucose cotransporter 2 inhibitors in the treatment of hypertension. Curr Opin Nephrol Hypertens. 2016;25:81-6. doi:10.1097/MNH.0000000000000199.
18. Lytvyn Y, Bjornstad P, Udell JA, et al. Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation. 2017;136:1643-58. doi:10.1161/CIRCULATIONAHA.117.030012.
19. Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: a state-of-the-art review. JACC Basic Transl Sci. 2020;5:632-44. doi:10.1016/j.jacbts.2020.02.004.
20. Chilton R, Tikkanen I, Cannon CP, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17:1180-93. doi:10.1111/dom.12572.
21. Wan N, Rahman A, Hitomi H, Nishiyama A. The Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Sympathetic Nervous Activity. Front. Endocrinol. (Lausanne). 2018;9:421. doi:10.3389/fendo.2018.00421.
22. Herat LY, Magno AL, Rudnicka C, et al. SGLT2 Inhibitor-Induced Sympathoinhibition: A Novel Mechanism for Cardiorenal Protection. JACC Basic Transl Sci. 2020;5(2):169-79. doi:10.1016/j.jacbts.2019.11.007.
23. Verma S, Mazer CD, Yan AT, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART CardioLink-6 randomized clinical trial. Circulation. 2019;140:1693-702. doi:10.1161/CIRCULATIONAHA.119.042375.
24. Brown AJM, Gandy S, McCrimmon R, et al. A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: the DAPA-LVH trial. Eur Heart J. 2020;41(36):3421-32. doi:10.1093/eurheartj/ehaa419.
25. Sattar N, McLaren J, Kristensen SL, et al. SGLT2 inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms? Diabetologia. 2016;59:1333-9. doi:10.1007/s00125-016-3956-x.
26. Verma S, McMurray JJV, Cherney DZI. The metabolodiuretic promise of sodiumdependent glucose cotransporter 2 inhibition: the search for the sweet spot in heart failure. JAMA Cardiol. 2017;2:939-40. doi:10.1001/jamacardio.2017.1891.
27. Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016;39:1108-14. doi:10.2337/dc16-0330.
28. Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care. 2016;39:1115-22. doi:10.2337/dc16-0542.
29. Heerspink HJL, Kosiborod M, Inzucchi SE, Cherney DZI. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int. 2018;94(1):26-39. doi:10.1016/j.kint.2017.12.027.
30. Tamargo J. Sodium-glucose Cotransporter 2 Inhibitors in Heart Failure: Potential Mechanisms of Action, Adverse Effects and Future Developments. Eur Cardiol. 2019;14(1):23-32. doi:10.15420/ecr.2018.34.2.
31. Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benef it: a state-of-the-art review. Diabetologia. 2018;61:2108-17. doi:10.1007/s00125-018-4670-7.
32. Packer M. Activation and inhibition of sodium-hydrogen exchanger is a mechanism that links the pathophysiology and treatment of diabetes mellitus with that of heart failure. Circulation. 2017;136:1548-59. doi:10.1161/CIRCUATIONAHA117.030418.
33. Baartscheer A, Schumacher CA, Wust RC, et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia. 2017;60:568-73. doi:10.1007/s00125-016-4134-x.
34. Iborra-Egea O, Santiago-Vacas E, Yurista SR, et al. Unraveling the molecular mechanism of action of Empagliflozin in heart failure with reduced ejection fraction with or without diabetes. JACC Basic Transl Sci. 2019;4:831-40. doi:10.1016/j.jacbts.2019.07.010.
35. Hammoudi N, Jeong D, Singh R, et al. Empagliflozin improves left ventricular diastolic dysfunction in a genetic model of type 2 diabetes. Cardiovasc Drugs Ther. 2017;31:233-46. doi:10.1007/s10557-017-6734-1.
36. Stowe KA, Burgess SC, Merritt M, et al. Storage and oxidation of long-chain fatty acids in the C57/BL6 mouse heart as measured by NMR spectroscopy. FEBS Lett. 2006;580:4282-7. doi:10.1016/j.febslet.2006.06.068.
37. Mizuno Y, Harada E, Nakagawa H, et al. The diabetic heart utilizes ketone bodies as an energy source. Metabolism. 2017;77:65-72. doi:10.1016/j.metabol.2017.08.005.
38. Gormsen LC, Svart M, Thomsen HH, et al. Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: a positron emission tomography study. J Am Heart Assoc. 2017;6(3):e005066. doi:10.1161/JAHA.116.005066.
39. Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J Am Coll Cardiol. 2019;73:1931-44. doi:10.1016/j.jacc.2019.01.056.
40. Krishnan E. Hyperuricemia and incident heart failure. Circ Heart Fail. 2009;2(6):556-62. doi:10.1161/CIRCHEARTFAILURE.108.797662.
41. Gu J, Fan YQ, Zhang HL, et al. Serum uric acid is associated with incidence of heart failure with preserved ejection fraction and cardiovascular events in patients with arterial hypertension. J Clin Hypertens (Greenwich). 2018;20(3):560-7. doi:10.1111/jch.13210.
42. Zhao Y, Xu L, Tian D, et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: ameta-analysis of randomized controlled trials. Diabetes Obes Metab. 2018;20(2):458-62. doi:10.1111/dom.13101.
43. Suthahar N, Meijers WC, Sillje HHW, de Boer RA. From inflammation to fibrosis-molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities. Curr Heart Fail Rep. 2017;14:235-50. doi:10.1007/s11897-017-0343-y.
44. Shi X, Verma S, Yun J, et al. Effect of empagliflozin on cardiac biomarkers in a zebrafish model of heart failure: clues to the EMPA-REG OUTCOME trial? Mol Cell Biochem. 2017;433:97-102. doi:10.1007/s11010-017-3018-9.
45. Lu Q, Liu J, Li X, et al. Empagliflozin attenuates ischemia and reperfusion injury through LKB1/AMPK signaling pathway. Mol Cell Endocrinol. 2020;501:110642. doi:10.1016/j.mce.2019.110642.
46. Seferovic PM, Fragasso G, Petrie M, et al. Sodium glucose co-transporter-2 inhibitors in heart failure: beyond glycaemic control. The Position Paper of the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure. 2020;22:1495-503. doi:10.1002/ejhf.1954.
47. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. NEnglJMed. 2019;21:1995-2008. doi:10.1056/NEJMoa1911303.
48. Packer M, Anker SD, Butler J, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 2020;383:1413-24. doi:10.1056/NEJMoa2022190.
49. Anker SD, Butler J, Filippatos G, et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med. 2021;385:1451-61. doi:10.1056/NEJMoa2107038.
50. Packer M, Anker SD, Butler J, et al. Effect of Empagliflozin on the Clinical Stability of Patients with Heart Failure and a Reduced Ejection Fraction: The EMPEROR-Reduced Trial. Circulation. 2021;143(4):326-36. doi:10.1161/CIRCULATIONAHA.120.051783.
51. Packer M, Anker SD, Butler J, et al. Empagliflozin in Patients With Heart Failure, Reduced Ejection Fraction, and Volume Overload. EMPEROR-Reduced Trial. J Am Coll Cardiol. 2021;77:1381-92. doi:10.1016/j.jacc.2021.01.033.
52. Butler J, Anker SD, Filippatos G, et al. Empagliflozin and health-related quality of life outcomes in patients with heart failure with reduced ejection fraction: the EMPEROR-Reduced trial. European Heart Journal. 2021;42(13):1203-12. doi:10.1093/eurheartj/ehaa1007.