Статья
Нарушения дыхания во сне у пациентов с хронической сердечной недостаточностью: классификация, эпидемиология и патофизиология. Часть I
Проблема хронической сердечной недостаточности (ХСН) является одной из центральных в современной кардиологии в связи с ее высокой распространенностью среди населения и большой смертностью. В свою очередь, нарушения дыхания во сне широко распространены у пациентов с ХСН и связаны как с прогрессированием основного заболевания, так и со снижением качества жизни. Впервые периодическое дыхание, как одна из форм нарушений дыхания во сне, было описано именно у пациентов с ХСН.Дальнейшее изучение проблемы показало высокую распространенность и других типов дыхательных нарушений во сне среди пациентов с ХСН. В статье рассмотрена физиология контроля дыхания во сне у здорового человека и патофизиология нарушений дыхания во сне. Подробно обсуждаются механизмы развития центрального апноэ сна и его связь с ХСН. Кроме того, освещены механизмы отягощающего влияния обструктивного апноэ сна и ХСН.
1. James SL, Abate D, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 Diseases and Injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1789-858. doi:10.1016/S0140-6736(18)32279-7.
2. Groenewegen A, Rutten FH, Mosterd A, et al. Epidemiology of heart failure. Eur J Heart Fail. 2020;22:1342-56. doi:10.1002/ejhf.1858.
3. Смирнова Е. А. изучение распространенности и этиологии хронической сердечной недостаточности в рязанской области. Российский кардиологический журнал. 2010;(2):78-83.
4. Фомин И. В. Хроническая сердечная недостаточность в Российской Федерации: что сегодня мы знаем и что должны делать. Российский кардиологический журнал. 2016;(8):7-13. doi:10.15829/1560-4071-2016-8-7-13.
5. Cheyne J. A case of apoplexy in which the fleshy part of the heart was converted into fat. Dublin Hosp Reports. 1818;2:216-22.
6. Stokes W. The Diseases of the Heart and the Aorta. Am J Med Sci. 1854;28:169-74. doi:10.1097/00000441-185407000-00014.
7. Oldenburg O, Wellmann B, Buchholz A, et al. Nocturnal hypoxaemia is associated with increased mortality in stable heart failure patients. Eur Heart J. 2016;37:1695-703. doi:10.1093/eurheartj/ehv624.
8. Herrscher TE, Akre H, Overland B, et al. High prevalence of sleep apnea in heart failure outpatients: Even in patients with preserved systolic function. J Card Fail. 2011;17:420-5. doi:10.1016/j.cardfail.2011.01.013.
9. Khayat R, Jarjoura D, Porter K, et al. Sleep disordered breathing and post-discharge mortality in patients with acute heart failure. Eur Heart J. 2015;36:1463-9. doi:10.1093/eurheartj/ehu522.
10. Macdonald M, Fang J, Pittman SD, et al. The current prevalence of sleep disordered breathing in congestive heart failure patients treated with beta-blockers. J Clin Sleep Med. 2008;4:38-42. doi:10.5664/jcsm.27076.
11. Padeletti M, Green P, Mooney AM, et al. Sleep disordered breathing in patients with acutely decompensated heart failure. Sleep Med. 2009;10:353-60. doi: 10.1016/j.sleep.2008.03.010.
12. Moosavi SH, Paydarfar D, Shea SA. Suprapontine control of breathing. In Pharmacology and Pathophysiology of the Control of Breathing. CRC Press. 2005. p. 71-102. ISBN: 9780824758905.
13. Skatrud JB, Dempsey JA. Interaction of sleep state and chemical stimuli in sustaining rhythmic ventilation. J Appl Physiol Respir Environ Exerc Physiol. 1983;55:813-22. doi:10.1152/jappl.1983.55.3.813.
14. Sasse SA, Berry RB, Nguyen TK, et al. Arterial blood gas changes during breath-holding from functional residual capacity. Chest. 1996;110:958-64. doi:10.1378/chest.110.4.958.
15. Phillipson EA. Control of breathing during sleep. Am RevRespir Dis. 1978;118:909-39. doi :10.1164/arrd.1978.118.5.909.
16. Passino C, Cacace E, Caratozzolo D, et al. Mechanics and Chemistry of Respiration in Health. Breathless Hear., Springer International Publishing; 2017, p. 11-33. doi:10.1007/978-3-319-26354-0_2.
17. Kazemi H. Neurotransmitters in central respiratory control. Respir Physiol. 2000;122:111-21. doi:10.1016/S0034-5687(00)00153-5.
18. Honda Y, Watanabe S, Hashizume I, et al. Hypoxic chemosensitivity in asthmatic patients two decades after carotid body resection. J Appl Physiol Respir Environ Exerc Physiol. 1979;46:632-8. doi:10.1152/jappl.1979.46.4.632.
19. Pappenheimer JR, Fencl V, Heisey SRDH. Role of cerebral fluids in control of respiration as studied in unanesthetized goats. Am J Physiol. 1965;208:436-50. doi:10.1152/ajplegacy.1965.208.3.436.
20. Eckert DJ, Jordan AS, Merchia P, et al. Central sleep apnea: Pathophysiology and treatment. Chest. 2007;131:595-607. doi:10.1378/chest.06.2287.
21. Naughton MT. Loop Gain in Apnea: Gaining Control or Controlling the Gain? Am J Respir Crit Care Med. 2010;181:103-5. doi:10.1164/rccm.200909-1449ED.
22. Skatrud JB, Dempsey JA, Badr S, et al. Effect of airway impedance on CO2 retention and respiratory muscle during NREM sleep. J Appl Physiol. 1988;65:1676-85. doi:10.1152/jappl.1988.65.4.1676.
23. Dempsey JA. Crossing the apnoeic threshold: Causes and consequences. Exp Physiol. 2005;90:13-24. doi:10.1113/expphysiol.2004.028985.
24. Takashimaya N. Airway reflexes in humans. Ward D Pharmacol Pathophysiol Control Breathing. 2005;202:225-60.
25. Schwartz AR, Patil SP, Squier S, et al. Obesity and upper airway control during sleep. J Appl Physiol. 2010;108:430-5. doi:10.1152/japplphysiol.00919.2009.
26. Fogel RB, Trinder J, White DP, et al. The effect of sleep onset on upper airway muscle activity in patients with sleep apnoea versus controls. J Physiol. 2005;564:549-62. doi:10.1113/jphysiol.2005.083659.
27. Javaheri S. Central sleep apnea. Clin Chest Med. 2010;31:235-48. doi: 10.1016/j.ccm.2010.02.013.
28. White DP. Pathogenesis of obstructive and central sleep apnea. Am J Respir Crit Care Med. 2005;172:1363-70. doi:10.1164/rccm.200412-1631SO.
29. Edwards BA, Sands SA, Berger PJ. Postnatal maturation of breathing stability and loop gain: the role of carotid chemoreceptor development. Respir Physiol Neurobiol. 2013;185:144-55. doi:10.1016/j.resp.2012.06.003.
30. Khan A, Qurashi M, Kwiatkowski K, et al. Measurement of the CO2 apneic threshold in newborn infants: Possible relevance for periodic breathing and apnea. J Appl Physiol. 2005;98:1171-6. doi:10.1152/japplphysiol.00574.2003.
31. Mateika JH, Sandhu KS. Experimental protocols and preparations to study respiratory long term facilitation. Respir Physiol Neurobiol. 2011;176:1-11. doi:10.1016/j.resp.2011.01.007.
32. Mateika JH, Syed Z. Intermittent hypoxia, respiratory plasticity and sleep apnea in humans: Present knowledge and future investigations. Respir Physiol Neurobiol. 2013;188:289-300. doi:10.1016/j.resp.2013.04.010.
33. Nemati S, Edwards BA, Sands SA, et al. Model-based characterization of ventilatory stability using spontaneous breathing. J Appl Physiol. 2011;111:55-67. doi: 10.1152/japplphysiol.01358.2010.
34. Prabhakar NR. Sensing hypoxia: Physiology, genetics and epigenetics. J Physiol. 2013;591:2245-57. doi:10.1113/jphysiol.2012.247759.
35. Denham S. Ward, Albert Dahan LT. Central chemoreceptors. Pharmacol. Pathophysiol. Control Breath., Boca Raton, FL: Taylor & Francis. 2005;202:21-70. doi:10.3109/9780203027103.
36. Younes M. Role of respiratory control mechanisms in the pathogenesis of obstructive sleep disorders. J Appl Physiol. 2008;105:1389-405. doi:10.1152/japplphysiol.90408.2008.
37. Trinder J, Padula M, Berlowitz D, et al. Cardiac and respiratory activity at arousal from sleep under controlled ventilation conditions. J Appl Physiol. 2001;90:1455-63. doi:10.1152/jappl.2001.90.4.1455.
38. Arzt M, Woehrle H, Oldenburg O, et al. Prevalence and Predictors of Sleep-Disordered Breathing in Patients With Stable Chronic Heart Failure: The SchlaHF Registry. JACC Hear Fail. 2016;4:116-25. doi:10.1016/j.jchf.2015.09.014.
39. Naughton MT, Kee K. Sleep apnoea in heart failure: To treat or not to treat? Respirology. 2017;22:217-29. doi:10.1111/resp.12964.
40. Cundrle I, Somers VK, Johnson BD, et al. Exercise end-tidal CO2 predicts central sleep apnea in patients with heart failure. Chest. 2015;147:1566-73. doi:10.1378/chest.14-2114.
41. Nopmaneejumruslers C, Kaneko Y, Hajek V, et al. Cheyne-stokes respiration in stroke: Relationship to hypocapnia and occult cardiac dysfunction. Am J Respir Crit Care Med. 2005;171:1048-52. doi:10.1164/rccm.200411-1591OC.
42. Calvin AD, Somers VK, Johnson BD, et al. Left Atrial size, chemosensitivity, and central sleep apnea in heart failure. Chest. 2014;146:96-103. doi:10.1378/chest.13-0309.
43. Oldenburg O, Bitter T, Wiemer M, et al. Pulmonary capillary wedge pressure and pulmonary arterial pressure in heart failure patients with sleep-disordered breathing. Sleep Med. 2009;10:726-30. doi:10.1016/j.sleep.2008.08.004.
44. Bitter T, Ozdemir B, Fox H, et al. Cycle length identifies obstructive sleep apnea and central sleep apnea in heart failure with reduced ejection fraction. Sleep Breath. 2018 ;22:1093-100. doi:10.1007/s11325-018-1652-4.
45. Levy P, Ryan S, Oldenburg O, et al. Sleep apnoea and the heart. Eur Respir Rev. 2013;22:333-52. doi:10.1183/09059180.00004513.
46. Kimura H, Ota H, Kimura Y, et al. Effects of Intermittent Hypoxia on Pulmonary Vascular and Systemic Diseases. Int J Environ Res Public Health. 2019;16:3101. doi:10.3390/ijerph16173101.
47. Kasai T, Floras JS, Bradley TD. Sleep apnea and cardiovascular disease: A bidirectional relationship. Circulation. 2012;126:1495-510. doi:10.1161/CIRCULATIONAHA.111.070813.
48. Morand J, Arnaud C, Pepin JL, et al. Chronic intermittent hypoxia promotes myocardial ischemia-related ventricular arrhythmias and sudden cardiac death. Sci Rep. 2018;8:2997. doi:10.1038/s41598-018-21064-y.
49. Bisogni V, Pengo MF, Maiolino G, et al. The sympathetic nervous system and catecholamines metabolism in obstructive sleep apnoea. J Thorac Dis. 2016;8:243-54. doi:10.3978/j.issn.2072-1439.2015.11.14.
50. Spaak J, Egri ZJ, Kubo T, et al. Muscle sympathetic nerve activity during wakefulness in heart failure patients with and without sleep apnea. Hypertension. 2005;46:1327-32. doi:10.116110.1161/01.HYP.0000193497.45200.66.
51. Pak VM, Grandner MA, Pack AI. Circulating adhesion molecules in obstructive sleep apnea and cardiovascular disease. Sleep Med Rev. 2014;18:25-34. doi:10.1016/j.smrv.2013.01.002.
52. Lui MMS, Lam DCL, Ip MSM. Significance of endothelial dysfunction in sleep-related breathing disorder. Respirology. 2013;18:39-46. doi:10.1111/j.1440-1843.2012.02212.x.
53. Ali SS, Oni ET, Warraich HJ, et al. Systematic review on noninvasive assessment of subclinical cardiovascular disease in obstructive sleep apnea: New kid on the block! Sleep Med Rev. 2014;18:379-91. doi:10.1016/j.smrv.2014.01.004.