Статья
Методы машинного обучения как инструмент диагностических и прогностических исследований при ишемической болезни сердца
Методы машинного обучения (МО) являются основным инструментом искусственного интеллекта, использование которых позволяет автоматизировать обработку и анализ больших данных, выявлять на этой основе скрытые или неочевидные закономерности и извлекать новые знания. В обзоре представлен анализ научной литературы по использованию методов МО для диагностики и прогнозирования клинического течения ишемической болезни сердца. Приведены сведения по эталонным базам данных, использование которых позволяет разрабатывать модели и валидировать их (European ST-T Database, Cleveland Heart Disease database, Multi-Ethnic Study of Atherosclerosis и др.). Показаны преимущества и недостатки отдельных методов МО (логистической регрессии, машин опорных векторов, деревьев решений, наивного байесовского классификатора, k-ближайших соседей) для разработки диагностических и прогностических алгоритмов. К наиболее перспективным методам МО относят глубокое обучение, которое реализуется с помощью многослойных искусственных нейронных сетей. Предполагается, что совершенствование моделей на основе методов МО и их внедрение в клиническую практику будет способствовать поддержке принятия врачебных решений, повышению эффективности лечения и оптимизации расходов здравоохранения.
1. The World Health Organization. Cardiovascular diseases. 2017. Available at: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
2. Вайсман Д. Ш., Александрова Г. А., Леонов С. А. и др. Достоверность показателей и структуры причин смерти от болезней системы кровообращения в российской федерации при международных сопоставлениях. Современные проблемы здравоохранения и медицинской статистики. 2019;3:87-102. doi:10.24411/2312-2935-2019-00055.
3. Johnson KW, Torres SJ, Glicksberg BS, et al. Artificial Intelligence in Cardiology. J Am Coll Cardiol. 2018;71(23):2668-79. doi:10.1016/j.jacc.2018.03.521.
4. Гельцер Б. И., Циванюк М. М., Шахгельдян К. И. и др. Методы машинного обучения в оценке предтестовой вероятности обструктивных и необструктивных поражений коронарного русла. Российский кардиологический журнал. 2020;25(5):3802. doi:10.15829/1560-4071-2020-3802.
5. Krittanawong C, Zhang H, Wang Z, et al. Artificial Intelligence in Precision Cardiovascular Medicine. J Am Coll Cardiol. 2017;69(21):2657-2664. doi:10.1016/j.jacc.2017.03.571.
6. Leiner T, Rueckert D, Suinesiaputra A, et al. Machine learning in cardiovascular magnetic resonance: basic concepts and applications. J Cardiovasc Magn Reson. 2019;21(1):61. doi:10.1186/s12968-019-0575-y.
7. Kagiyama N, Shrestha S, Farjo PD, et al. Artificial Intelligence: Practical Primer for Clinical Research in Cardiovascular Disease. J Am Heart Assoc. 2019;8:e012788. doi:10.1161/JAHA.119.012788.
8. Quesada JA, Lopez-Pineda A, Gil-Guillen VF, et al. Machine learning to predict cardiovascular risk. Int J Clin Pract. 2019;73(10):e13389. doi:10.1111/ijcp.13389.
9. Goldberger AL, Amaral LAN, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation. 2000;101(23):e215-e220. doi:10.1161/01.cir.101.23.e215.
10. UCI Machine Learning Repository. Available from: http://archive.ics.uci.edu/ml.
11. Taddei A, Distante G, Emdin M, et al. The European ST-T database: standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography. Eur Heart J. 1992;13(9):1164-72. doi:10.1093/oxfordjournals.eurheartj.a060332.
12. Jager F, Taddei A, Moody GB, et al. Long-term ST database: A reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial ischaemia. Med Biol Eng Comput. 2003;41(2):172-82. doi:10.1007/bf02344885.
13. St Petersburg INCART 12-lead Arrhythmia Database. 2008. doi:10.13026/C2V88N.
14. Iyengar N, Peng CK, Morin R, et al. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. American Journal of Physiology-Regulatory. Am J Physiol. 1996;271(4):1078-84. doi:10.1152/ajpregu.1996.271.4.r1078.
15. Alizadehsani R, Abdar M, Roshanzamir M, et al. Machine learning-based coronary artery disease diagnosis: A comprehensive review. Comput Biol Med. 2019;103346. doi:10.1016/j.compbiomed.2019.103346.
16. MESA — Multi-Ethnic Study of Atherosclerosis. Available from: https://www.mesa-nhlbi.org/.
17. Saeed M, Villarroel M, Reisner AT, et al. Multiparameter Intelligent Monitoring in Intensive Care II: A public-access intensive care unit database. Crit Care Med. 2011;39(5):952-60. doi:10.1097/ccm.0b013e31820a92c6.
18. Johnson AEW, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible critical care database. Scientific Data. 2016;3:160035. doi:10.1038/sdata.2016.35.
19. Alizadehsani R, Hosseini MJ, Khosravi A, et al. Non-invasive detection of coronary artery disease in high-risk patients based on the stenosis prediction of separate coronary arteries. Computer Methods and Programs in Biomedicine. 2018;162:119-27. doi:10.1016/j.cmpb.2018.05.009.
20. Mastoi Q, Wah TY, Gopal Raj R, et al. Automated Diagnosis of Coronary Artery Disease: A Review and Workflow. Cardiol Res Pract. 2018;2018:2016282. doi:10.1155/2018/2016282.
21. Martin-Isla C, Campello VM, Izquierdo C, et al. Image-based cardiac diagnosis with machine learning: a review. Front Cardiovasc Med. 2020;7:1. doi:10.3389/fcvm.2020.00001.
22. Ярославская Е. И., Кузнецов В. А., Горбатенко Е. А. и др. Калькулятор необструктивного коронарного атеросклероза: клинический пример использования у мужчины с подозрением на ишемическую болезнь сердца. Сибирский медицинский журнал. 2018;33(3):93-101. doi:10.29001/2073-8552-2018-33-3-93-101.
23. Roe MT, Harrington RA, Prosper DM, et al. Clinical and Therapeutic Profile of Patients Presenting with Acute Coronary Syndromes Who Do Not Have Significant Coronary Artery Disease. Circulation. 2000;102(10):1101-6. doi:10.1161/01.cir.102.10.1101.
24. Verma L, Srivastava S, Negi PC. A Hybrid Data Mining Model to Predict Coronary Artery Disease Cases Using Non-Invasive Clinical Data. J Med Syst. 2016;40(7):178. doi:10.1007/s10916-016-0536-z.
25. Nakao YM, Miyamoto Y, Higashi M, et al. Sex differences in impact of coronary artery calcification to predict coronary artery disease. Heart. 2018;104(13):1118-24. doi:10.1136/heartjnl-2017-312151.
26. Ballesteros-Ortega D, Martinez-gonzalez O, Blancas R, et al. Characteristics of patients with myocardial infarction with nonobstructive coronary arteries (MINOCA) from the ARIAM-SEMICYUC registry: development of a score for predicting MINOCA. Vasc Health Risk Manag. 2019;15:57-67. doi:10.2147/vhrm.s185082.
27. Никулина С. Ю., Чернова А. А., Третьякова С. С. и др. Прогнозирование нарушений сердечной проводимости с использованием методов математического анализа. Российский кардиологический журнал. 2018;(10):53-58. doi:10.15829/1560-4071-2018-10-53-58.
28. Sharma K, Shah K, Brahmbhatt P, et al. Skipping breakfast and the risk of coronary artery disease. QJM. 2018;111(10):715-719. doi:10.1093/qjmed/hcy162.
29. Козлова Е. В., Старостин И. В., Булкина О. С. и др. Оценка частоты сердечно-сосудистых событий и смертности у больных со стабильной ишемической болезнью сердца в зависимости от исходного состояния коронарного коллатерального кровотока (5-летнее наблюдение). Российский кардиологический журнал. 2018;(3):11-6. doi:10.15829/1560-4071-2018-3-11-16.
30. Gao Y, Zhang Q, Pan T. Relation of monocyte/high-density lipoprotein cholesterol ratio with coronary artery disease in type 2 diabetes mellitus. Clin Lab. 2018;64(6):901-6. doi:10.7754/Clin.Lab.2018.171022.
31. Sridhar C, Acharya UR, Bairy GM. Automated diagnosis of Coronary Artery Disease using nonlinear features extracted from ECG signals, 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest. 2016, pp. 000545-000549, doi:10.1109/SMC.2016.7844296.
32. Shi M, Zhan C, He H, et al. Renyi distribution entropy analysis of short-term heart rate variability signals and its application in coronary artery disease detection. Front Physiol. 2019;10:809. doi:10.3389/fphys.2019.00809.
33. Tabassian M, Alessandrini M, Herbots L, et al. Machine learning of the spatio-temporal characteristics of echocardiographic deformation curves for infarct classification. Int J Cardiovasc Imaging. 2017;33(8):1159-1167. doi:10.1007/s10554-017-1108-0.
34. Juarez-Orozco LE, Saraste A, Capodanno D, et al. Impact of a decreasing pre-test probability on the performance of diagnostic tests for coronary artery disease. Eur Heart J Cardiovasc Imaging. 2019;20(11):1198-1207. doi:10.1093/ehjci/jez054.
35. Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines on the diagnosis and management of chronic coronary syndromes: The Task Force for diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J. 2019;41(3):407-77. doi:10.1093/eurheartj/ehz425.
36. Bae Y, Kang S-J, Kim G, et al. Prediction of coronary thin-cap fibroatheroma by intravascular ultrasound-based machine learning. Atherosclerosis. 2019;288:168-74. doi:10.1016/j.atherosclerosis.2019.04.228.
37. Berikol GB, Yildiz O, Ozcan IT. Diagnosis of Acute Coronary Syndrome with a Support Vector Machine. J Med Syst. 2016;40(4):84. doi:10.1007/s10916-016-0432-6.
38. Cui S, Li K, Ang L, et al. Plasma Phospholipids and Sphingolipids Identify Stent Restenosis After Percutaneous Coronary Intervention. JACC Cardiovasc Interv. 2017;10(13):1307-1316. doi:10.1016/j.jcin.2017.04.007.
39. Ahmadi E, Weckman GR, Masel DT. Decision making model to predict presence of coronary artery disease using neural network and C5.0 decision tree. J Ambient Intell Human Comput. 2017;9(4):999-1011. doi:10.1007/s12652-017-0499-z.
40. Acharya UR, Sudarshan VK, Koh JEW, et al. Application of higher-order spectra for the characterization of Coronary artery disease using electrocardiogram signals. Biomedical Signal Processing and Control. 2017;31:31-43. doi:10.1016/j.bspc.2016.07.003.
41. Juarez-Orozco LE, Knol RJ, Sanchez-Catasus CA, et al. Machine learning in the integration of simple variables for identifying patients with myocardial ischemia. J. Nucl. Cardiol. 2020;27:147-55. doi:10.1007/s12350-018-1304-x.
42. Chicco D, Jurman G. Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Med Inform Decis Mak. 2020;20(1):16. doi:10.1186/s12911-020-1023-5.
43. Dogan MV, Grumbach IM, Michaelson JJ, et al. Integrated genetic and epigenetic prediction of coronary heart disease in the Framingham Heart Study. PLOS ONE. 2018;13 (1):e0190549. doi:10.1371/journal.pone.0190549.
44. Ambale-Venkatesh B, Yang X, Wu CO, et al. Cardiovascular Event Prediction by Machine Learning: The Multi-Ethnic Study of Atherosclerosis. Circ Res. 2017;121(9):1092-1101. doi:10.1161/CIRCRESAHA.117.311312.
45. Narula S, Shameer K, Salem Omar AM, et al. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol. 2016;68:2287-95. doi:10.1016/j.jacc.2016.08.062.
46. Arabasadi Z, Alizadehsani R, Roshanzamir M, et al. Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm. Computer Methods and Programs in Biomedicine. 2017;141:19-26. doi:10.1016/j.cmpb.2017.01.004.
47. Weng SF, Reps J, Kai J, et al. Can machine learning improve cardiovascular risk prediction using routine clinical data? PLoS One. 2017;12(4):e0174944. doi:10.1371/journal.pone.0174944.
48. Kim JK, Kang S. Neural Network-Based Coronary Heart Disease Risk Prediction Using Feature Correlation Analysis. Journal of Healthcare Engineering. 2017;1-13. doi:10.1155/2017/2780501.
49. Гусев А. В., Гаврилов Д. В., Корсаков И. Н. и др. Перспективы использования методов машинного обучения для предсказания сердечно-сосудистых заболеваний. Врач и информационные технологии. 2019(3):41-47.
50. Acharya UR, Fujita H, Oh SL, et al. Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals. Applied Intelligence. 2018;49,16-27. doi:10.1007/s10489-018-1179-1.
51. Lih OS, Jahmunah V, San TR, et al. Comprehensive electrocardiographic diagnosis based on deep learning. Artificial Intelligence in Medicine. 2020;101789. doi:10.1016/j.artmed.2019.101789.
52. Kiranyaz S, Ince T, Gabbouj M. Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks. IEEE Trans Biomed Eng. 2016;63(3):664-75. doi:10.1109/tbme.2015.2468589.
53. Швец Д. А., Карасёв А. Ю., Смоляков М. В. и др. Нейросетевой анализ предикторов летального риска у больных после перенесенного острого коронарного синдрома. Российский кардиологический журнал. 2020;25(3):3645. doi:10.15829/1560-4071-2020-3-3645.
54. Sofian H, Chia Ming JT, Noor NM. Calcification Detection Using Deep Structured Learning in Intravascular Ultrasound Image for Coronary Artery Disease, 2018 2nd International Conference on BioSignal Analysis, Processing and Systems (ICBAPS), Kuching. 2018. pp. 47-52, doi:10.1109/ICBAPS.2018.8527415.
55. Lui HW, Chow KL. Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices. Informatics in Med. Unlocked. 2018;13,26-33. doi:10.1016/j.imu.2018.08.002.
56. Feng K, Pi X, Liu H, et al. Myocardial Infarction Classification Based on Convolutional Neural Network and Recurrent Neural Network. Applied Sciences. 2019;9(9):1879. doi:10.3390/app9091879.