Статья

Методы машинного обучения как инструмент диагностических и прогностических исследований при ишемической болезни сердца

Б. И. Гельцер, М. М. Циванюк, К. И. Шахгельдян, В. Ю. Рублев
2020

Методы машинного обучения (МО) являются основным инструментом искусственного интеллекта, использование которых позволяет автоматизировать обработку и анализ больших данных, выявлять на этой основе скрытые или неочевидные закономерности и извлекать новые знания. В обзоре представлен анализ научной литературы по использованию методов МО для диагностики и прогнозирования клинического течения ишемической болезни сердца. Приведены сведения по эталонным базам данных, использование которых позволяет разрабатывать модели и валидировать их (European ST-T Database, Cleveland Heart Disease database, Multi-Ethnic Study of Atherosclerosis и др.). Показаны преимущества и недостатки отдельных методов МО (логистической регрессии, машин опорных векторов, деревьев решений, наивного байесовского классификатора, k-ближайших соседей) для разработки диагностических и прогностических алгоритмов. К наиболее перспективным методам МО относят глубокое обучение, которое реализуется с помощью многослойных искусственных нейронных сетей. Предполагается, что совершенствование моделей на основе методов МО и их внедрение в клиническую практику будет способствовать поддержке принятия врачебных решений, повышению эффективности лечения и оптимизации расходов здравоохранения.

Гельцер Б. И., Циванюк М. М., Шахгельдян К. И., Рублев В. Ю. Методы машинного обучения как инструмент диагностических и прогностических исследований при ишемической болезни сердца. Российский кардиологический журнал. 2020;25(12):3999. https://doi.org/10.15829/1560-4071-2020-3999
Цитирование

Список литературы

Похожие публикации