Статья
Некоторые про- и противовоспалительные цитокины, полиморфные варианты их генов и постинфарктное ремоделирование сердца
Влияние молекулярно-генетических факторов на развитие сердечно-сосудистых заболеваний (ССЗ) уже на протяжении ряда лет является предметом активного изучения. У пациентов с острым инфарктом миокарда и сердечной недостаточностью в детерминации общего воспалительного фона и персистенции воспалительных медиаторов в миокарде очевидно наличие генетической компоненты. Генетический фон в комбинации с традиционными факторами риска ССЗ определяет характер клинического течения болезни, степень тяжести и ее исход. В настоящем обзоре обобщены данные ассоциативных исследований генов прои противовоспалительных цитокинов с ишемической болезнью сердца и ее клиническими проявлениями.
1. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute coronary syndromes in patients presenting with ST-segment elevation. European Heart Journal. 2018;39(2):119-77. doi:10.1093/eurheartj/ehx393.
2. Daubert M, White J, Al-Khalidi H, et al. Cardiac remodeling after large ST-elevation myocardial infarction in the current therapeutic era. American Heart Journal. 2020;223:8797. doi:10.1016/j.ahj.2020.02.017.
3. Zarrouk-Mahjoub S, Zagdoudi M, Amira Z, et al. Proand anti-inflammatory cytokines in post infarction left ventricular remodeling. International Journal of Cardiology. 2016;221:632-6. doi:10.1016/j.ijcard.2016.07.073.
4. Mouton A, Rivera O, Lindsay M. Myocardial infarction remodeling that progression to heart failure: a signaling misunderstanding. American Journal of Physiology-Heart and Circulatory Physiology. 2018;315(1):71-9. doi:10.1152/ajpheart.00131.2018.
5. Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodeling. Nature Reviews Cardiology. 2014;11:255-65. doi:10.1038/nrcardio.2014.28.
6. Azevedo P, Poletago B, Minicucci M. Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arquivos Brasileiros de Cardiologia. 2016;106(1):62-9. doi:10.5935/abc.20160005.
7. Tomoaia R, Beyer RS, Simu G, et al. Understanding the role of echocardiography in remodeling after myocardial infarction and development of heart failure with preserved ejection fraction. Medical Ultrasonography. 2019;21(1):69-76. doi:10.11152/mu-1768.
8. Bhatt A, Ambrosy A, Velazquez E. Adverse remodeling and reverse remodeling after myocardial infarction. Current Cardiology Reports. 2017;19(71). doi:10.1007/s11886-017-0876-4.
9. Chen D, Frangogiannis NG. Immune cell in repair of the infarcted myocardium. Microcirculation. 2017;24(1):e12305. doi:10.1111/micc.12305.
10. Frangogiannis NG. Cell biological mechanisms in regulation of the post-infarction inflammatory response. Current Opinion in Physiology. 2018;1:7-13. doi:10.1016/j. cophys.2017.09.001.
11. Ong S-B, Hernandez-Resendiz S, Gustavo E, et al. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacology & Therapeutics. 2018;(186):73-87. doi:10.1016/j.pharmthera.2018.01.001.
12. Yan W, Abu-El-Rub E, Saravanan S, et al. Inflammation in myocardial injury: mesenchymal stem as potential immunomodulators. American Journal of Physiology. 2019;317(2):21325. doi:10.1152/ajpheart.00065.2019.
13. Коненков В. И., Шевченко В. Ф., Прокофьев В. Н. и др. Ассоциированность комбинированных генотипов полиморфных участков генов цитокинов, факторв роста сосудистого эндотелия и металлопротеиназ с развитием инфаркта миокарда у мужчин. Российский кардиологический журнал. 2014;(10):34-9. doi:10.15829/15604071-2014-10-34-39.
14. Bennermo M, Nordin M, Lundman P, et al. Genetic and environmental influences on the plasma interleukin-6 concentration in patients with a recent myocardial infarction: a casecontrol study. Journal of Interferon & Cytokine Research. 2011;31(2):259-64. doi:10.1089/jir.2010.0036.
15. Buraczynska M, Zukovski R, Drop D, et al. Effect of G(-174)C polymorphism in interleukin-6 gene on cardiovascular disease in type 2 diabetes patients. Cytokine. 2016;79:7-11. doi:10.1016/j.cyto.2015.12.004.
16. Jin Y, Wang Q, Wang G, et al. Common polymorphism in the interleukin-6 gene and myocardial infarction risk: a meta-analysis. Genetic testing and molecular biomarkers. 2014;18(5):330-40. doi:10.1089/gtmb.2013.0404.
17. Olivieri F, Antonicelli R, Cardelli M, et al. Genetic polymorphism of inflammatory cytokines and myocardial infarction in the elderly. Mechanisms of Ageing and Development. 2008;127(6):552-9. doi:10.1016/j.mad.2006.01.013.
18. Zhou J, Feng J, Li X. Association between the -174 G/C polymorphism of the interleukin-6 gene and myocardial infarction risk: a meta-analysis. Genet Mol Res. 2016;15(3). doi:10.4238/gmr.15038358.
19. Vakili H, Hossein Ghadeian SM, et al. Genetic polymorphism of inerleukin-6 gene and susceptibility to acute myocardial infarction. Coronary Artery Disease. 2011;(22):299-305. doi:10.1097/mca.0b013e328346b848.
20. Smith A-JP, Humphries SE. Cytokine and cytokine receptor gene polymorphisms and their functionality. Cytokine & Growth Factor Reviews. 2009;20:43-59. doi:10.1016/j.cytogfr.2008.11.006.
21. Biswas S, Ghoshal PK, Mandal N. Synergistic effect of anti and pro-inflammatory cytokine genes and their promoter polymorphism with ST-elevation of myocardial infarction. Gene. 2014;544:145-51. doi:10.1016/j.gene.2014.04.065.
22. Mishra A, Srivastava A, Mittal T, et al. Role of inflammatory gene polymorphisms in left ventricular dysfunction (LVD) susceptibility in coronary artery disease patients. Cytokines. 2013;61:856-61. doi:10.1016/j.cyto.2012.12.020.
23. Tian M, Yuan Yu-Ch, Li J-Y, et al. Tumor necrosis factor-α and its role as a mediator in myocardial infarction: A brief review. Chronic Disease and Translational Medicine. 2015;1(1):18-26. doi:10.1016/j.cdtm.2015.02.002.
24. Cho H-Ch, Yu G, Lee M-Yu, et al. TNF-α polymorphism and coronary artery disease; association study in the Korean population. Cytokine. 2013;62:104-9. doi:10.1016/j.cyto.2013.02.008.
25. Kumari R, Kumar S, Ahmad MK, et al. Promoter variants of TNF-α rs1800629 and IL-10 rs1800871 are independently associated with the susceptibility of coronary artery disease in north Indian. Cytokine. 2018;110:131-6. doi:10.1016/j.cyto.2018.04.035.
26. Hua XP, Qian J, Cao CB, et al. Association between the TNF-α rs1800629 polymorphism and the risk of myocardial infarction: a meta-analysis. Genetics Molecular Research. 2016;15(3):gmr.15037292. doi:10.4238/gmr.15037292.
27. Pulido-Gomez K, Hernandez-Diaz Y, Tovilla-Zárate CA, et al. Association of G308A and G238A polymorphisms of the TNF-α gene with risk of coronary heart disease: systemic review and meta-analysis. Archive of Medical Research. 2016;47(7):557-72. doi:10.1016/j.arcmed.2016.11.006.
28. Zeybek U, Toptas B, Karaali ZE, et al. Effect of TNF-α and IL-1β genetics variants om the development of myocardial infarction in Torkish population. Molecular Biology Reports. 2011;38:5453-7. doi:10.1007/s11033-011-0701-x.
29. Fang Y, Xie H, Lin Z. Association between IL-1β +3954C/T polymorphism and myocardial infarction risk. A meta-analysis. Medicine. 2018;97(20):11645. doi:10.1097/ md.0000000000011645.
30. Mahmoudi MJ, Taghvaei M, Harsini S, et al. Association of interleukin 1 gene cluster and interleukin 1 receptor gene polymorphisms with ischemic heart failure. Bratisl Med J. 2016;117(7):367-70. doi:10.4149/bll_2016_072.
31. Lacoviello L, Castelnuovo D, Gattone M, et al. Polymorphism of the interleukin-1β gene affect the risk of myocardial infarction and ischemic stroke at young age and the response of mononuclear cells to stimulation in vitro. Atherosclerosis, Thrombosis, and Vascular Biology. 2005;25:222-7. doi:10.1161/01.atv.0000150039.60906.02.
32. Tabata N, Sueta D, Akasaka T, et al. Helicobacter pylori seropositivity in patients with interleukin-1 polymorphism is significantly associated with ST-segment elevation myocardial infarction. PLOS ONE. 2016;11(11):e0166240. doi:10.1371/journal.pone.0166240.
33. Chen Q, Wang W, Huang Zh, et al. Correlation of rs1122608 SNP with acute myocardial infarction susceptibility and clinical characteristics in a Chinese Han population: A case control study. The Anatolian Journal of Cardiology. 2018;19(4):249-58. doi:10.14744/anatoljcardiol.2018.35002.
34. Yang B, Zhao H, Bin X, et al. Influence of interleukin-1 beta gene polymorphisms on the risk of myocardial infarction and ischemic stroke at young age in vivo and vitro. International Journal of Clinical and Experimental Pathology. 2015;8(11):13806-13. doi:10.1161/01.atv.0000150039.60906.02.
35. Stegger J, Schmidt E, Tjønneland A, et al. Single nucleotide polymorphisms in IL1B and the risk of acute coronary syndrome: a Danish case-cohort study. PLOSE ONE. 2012;7(6):36829. doi:10.1371/journal.pone.0036829.
36. Kaur N, Singh J, Reddy S. Association of IL-8 -251A/T rs4073 and IL-10 rs1800872 -592C/ A polymorphisms and coronary artery disease in North Indian Population. Biochemical Genetics. 2019;57(1):126-46. doi:10.1007/s10528-018-9880-7.
37. Yang H, Wang S, Yan L, et al. Association of interleukin gene polymorphism with gene polymorphisms with the risk of coronary artery disease. Genetics and Molecular Research. 2015;14(4):1289-96. doi:10.4238/2015.october.16.16.
38. Wang Y, Zheng J, Liu P, et al. Association between the interleukin 10 — 1082G>A polymorphism and coronary heart disease risk in a Caucasian population: a meta-analysis. Immunogenetics. 2012;39(2):144-50. doi:10.1111/j.1744-313x.2011.01072.x.
39. Yang P, Liu J, Xiao J, et al. Association between Seven Common Cytokine Gene Polymorphisms and Coronary Artery Disease: Evidence from a Meta-Analysis. International Archive of Allergy and Immunology. 2020;181(4):301-10. doi:10.1159/000504752.
40. Lio D, Candore G, Crivello A, et al. Opposite effects of interleukin-10 common gene polymorphisms in cardiovascular disease and in successful ageing: genetic background of male centenarians is protective against coronary heart disease. Journal of Medical Genetics. 2004;41(10):790-4.
41. Бернс С. А., Шмидт Е. А., Макеева О. А. и др. Роль вариабельных сайтов G-1082А и С-592А гена IL10 в развитии неблагоприятных исходов в течение одного года наблюдения у больных с острым коронарным синдромом без подъема сегмента ST. Российский кардиологический журнал. 2017;(10):17-22. doi:10.15829/1560-40712017-10-17-22.
42. Wang S, Dai YX, Chen LL, et al. Effect of IL-1β, IL-8, and IL-10 polymorphisms on the development of myocardial infarction. Genetic and Molecular Research. 2015;14(4):12016-21. doi:10.4238/2015.october.5.14.
43. Mahmoudi M, Hedayat M, Taghvaei M, et al. Association of IL-4 gene polymorphisms with ischemic heart failure. 2014;21(1):24-8. doi:10.5603/cj.a2013.0049.
44. Sobti R, Maithil N, Thakur H, et al. VEGF and IL-4 gene variability and its association with the risk of coronary heart disease in north Indian population. Molecular and Cellular Biochemistry. 2010;341(1-2):139-48. doi:10.1007/s11010-010-0445-2.
45. Koch W, Hoppmann P, Mueller J, et al. Association of transforming growth factor-beta1 gene polymorphisms with myocardial infarction in patients with angiographically proven coronary heart disease. 2006;26(5):1114-9. doi:10.1161/01.atv.0000217747.66517.11.
46. Li Ya, Zhou Ya, Gong G, et al. TGF-B1 gene -509C/T polymorphism and coronary artery disease: an updated meta-analysis involving 11,701 subjects. Frontiers in Physiology. 2017;(8). doi:10.3389/fphys.2017.00108.
47. Wu L, Chen G, Song J Association between TGF-β1 -913G/C polymorphism and myocardial infarction risk in a Chinese Han population: a case-control study. Bioscience Reports. 2019;39(6):BSR20190315. doi:10.1042/bsr20190315.
48. Du L, Gong T, Yao M, et al. Contribution of the polymorphism rs1800469 of transformation growth factor β in the development of myocardial infarction: meta-analysis of 5460 cases and 8413 controls (MOOSE-complaint article). Medicine. 2019;28(26):e15946. doi:10.1097/md.0000000000015946.
49. Шляхто Е. В., Сергеева Е. Г., Беркович О. А. и др. Предикторы неблагоприятного течения ишемической болезни сердца: результаты динамического наблюдения. Российский кардиологический журнал. 2018;(7):60-66. doi:10.15829/1560-4071-2018-7-60-66.