1. Sim CS, Sung JH, Cheon SH, et al. The effects of different noise types on heart rate variability in men. Yonsei medical journal. 2015;56:235-43. doi:10.3349/ymj.2015.56.1.235.
2. Seely AJ, Macklem PT. Complex systems and the technology of variability analysis. Crit Care. 2004;8:R367-84. doi:10.1186/cc2948.
3. Shannon CE. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review. 2001;5:3-55. doi:10.1145/584091.584093.
4. Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5:82-7. doi:10.1063/1.166141.
5. Garner D M, Ling BW. K. Measuring and locating zones of chaos and irregularity. J Syst Sci Complex. 2014;27:494-506. doi:10.1007/s11424-014-2197-7
6. Alkan A, Kiymik MK. Comparison of AR and Welch methods in epileptic seizure detection. J Med Syst. 2006;30:413-9. doi:10.1007/s10916-005-9001-0.
7. Alkan A, Yilmaz AS. Frequency domain analysis of power system transients using Welch and Yule-Walker AR methods. Energy conversion and management. 2007;48:2129-35. doi:10.1016/j.enconman.2006.12.017.
8. Wajnsztejn R, De Carvalho TD, Garner DM, et al. Heart rate variability analysis by chaotic global techniques in children with attention deficit hyperactivity disorder. Complexity. 2016;21:412-9. doi:10.1002/cplx.21700.
9. Ghil M. The SSA-MTM Toolkit: Applications to analysis and prediction of time series. Applications of Soft Computing. 1997;3165:216-30. doi:10.1117/12.279594.
10. Subasi A. Selection of optimal AR spectral estimation method for EEG signals using Cramer-Rao bound. Comput.Biol.Med. 2007;37:183-94. doi:10.1016/j.compbiomed.2005.12.001
11. Subasi A. Application of classical and model-based spectral methods to describe the state of alertness in EEG. J Med Syst. 2005;29:473-86. doi:10.1007/s10916-005-6104-6.
12. Kiymik MK, Subasi A, Ozcalik HR. Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizure. J Med Syst. 2004;28:511-22. doi:10.1023/b:joms.0000044954.85566.a9.
13. Seiver A, Daane S, Kim R. Regular low frequency cardiac output oscillations observed in critically ill surgical patients. Complexity. 1997;2;51-5.
14. Kawaguchi M, Takamatsu I, Masui K, Kazama T. Effect of landiolol on bispectral index and spectral entropy responses to tracheal intubation during propofol anaesthesia. Br.J.Anaesth. 2008;101:273-8. doi:10.1093/bja/aen162.
15. Kawaguchi M, Takamatsu I, Kazama T. Rocuronium dose-dependently suppresses the spectral entropy response to tracheal intubation during propofol anaesthesia. Br.J.Anaesth. 2009;102:667-72. doi:10.1093/bja/aep040
16. Alvarez D, Hornero R, Marcos J, et al. Spectral analysis of electroencephalogram and oximetric signals in obstructive sleep apnea diagnosis. Conf.Proc.IEEE Eng Med.Biol.Soc. 2009;2009:400-3. doi:10.1109/IEMBS.2009.5334905.
17. Banzett RB, O’Donnell CR. Should we measure dyspnoea in everyone? Eur Respir J. 2014;43:1547-50. doi:10.1183/09031936.00031114.
18. Schmidt M, Banzett RB, Raux M, et al. Unrecognized suffering in the ICU: addressing dyspnea in mechanically ventilated patients. Intensive Care Med. 2014;40:1-10. doi:10.1007/s00134-013-3117-3.
19. Goldberger AL, Peng CK, Lipsitz LA. What is physiologic complexity and how does it change with aging and disease? Neurobiol.Aging. 2002;23:23-6. doi:10.1016/S0197-4580(01)00266-4.
20. Ponnusamy A, Marques JL, Reuber M. Comparison of heart rate variability parameters during complex partial seizures and psychogenic nonepileptic seizures. Epilepsia. 2012;53:1314-21. doi:10.1111/j.1528-1167.2012.03518.x.
21. Ponnusamy A, Marques JL, Reuber M. Heart rate variability measures as biomarkers in patients with psychogenic nonepileptic seizures: potential and limitations. Epilepsy Behav. 2011;22:685-91. doi:10.1016/j.yebeh.2011.08.020.
22. Bernardo AF, Vanderlei LC, Garner DM. HRV Analysis: A Clinical and Diagnostic Tool in Chronic Obstructive Pulmonary Disease. Int Sch Res Notices. 2014;2014:673232. doi:10.1155/2014/673232.
23. Mackey MC, Milton JG. Dynamical diseases. Ann N Y Acad Sci. 1987;504:16-32. doi:10.1111/j.1749-6632.1987.tb48723.x.
24. Alves M, Garner DM, Fontes AM, et al. Linear and complex measures of heart rate variability during exposure to traffic noise in healthy women. Complexity. 2018;2018: ID 2158391. doi:10.1155/2018/2158391.
25. De Souza NM, Vanderlei LCM, Garner DM. Risk evaluation of diabetes mellitus by relation of chaotic globals to HRV. Complexity. 2015;20:84-92. doi:10.1002/cplx.21508.
26. Barreto GS, Vanderlei FM, Vanderlei LCM, Garner DM. Risk appraisal by novel chaotic globals to HRV in subjects with malnutrition. Journal of Human Growth and Development. 2014;24:243-8. doi:10.7322/jhgd.88900.
27. Vanderlei FM, Vanderlei LCM, Garner DM. Heart rate dynamics by novel chaotic globals to HRV in obese youths. Journal of Human Growth and Development. 2015;25:82-8. doi:10.7322/jhgd.96772.
28. Day BP, Evers A, Hack DE. Multipath Suppression for Continuous Wave Radar via Slepian Sequences. IEEE Transactions on Signal Processing. 2020;68:548-57. doi:10.1109/TSP.2020.2964199.
29. Razali NM, Wah YB. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling and Analytics. 2011;2:21-33.
30. Yap BW, Sim CH. Comparisons of various types of normality tests. Journal of Statistical Computation and Simulation. 2011;81:2141-55. doi:10.1080/00949655.2010.520163.
31. Royston P. Approximating the Shapiro-Wilk W-Test for non-normality. Statistics and Computing. 1992;2:117-9.
32. Hsu JC. Multiple Comparisons: Theory and Methods. CRC Press: Boca Raton, Florida, 1996. doi:10.1201/b15074.
33. McKight PE, Najab J. Kruskal-wallis test. The corsini encyclopedia of psychology. 2010;1-1. doi:10.1002/9780470479216.corpsy0491.
34. Cohen J. Statistical power analysis for the behavioral sciences. Routledge, 2013.
35. Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in psychology. 2013;4:863. doi:10.3389/fpsyg.2013.00863.
36. Hedges LV, Olkin I. Statistical methods for meta-analysis. Academic press, 2014. doi:10.2307/1164953.
37. Hedge LV. Distribution theory for Glass’s estimator of effect size and related estimators. journal of Educational Statistics. 1981;6:107-28. doi:10.3102/10769986006002107.
38. Kline R. Beyond significance testing: Retorming data analyisis methods in behavioral research.(pp. 247-271). Washington, DC, US: American Psychological Association. 2004. doi:10.1037/10693-000.
39. Ialongo C. Understanding the effect size and its measures. Biochemia medica: Biochemia medica. 2016;26:150-63. doi:10.11613/BM.2016.015.
40. Sawilowsky SS. New effect size rules of thumb. Journal of Modern Applied Statistical Methods. 2009;8:26. doi:10.22237/jmasm/1257035100.
41. Thomson DJ. Spectrum estimation and harmonic analysis. Proceedings of the IEEE. 1982;70:1055-96. doi:10.1109/PROC.1982.12433.
42. Bekka RE, Chikouche D. Effect of the window length on the EMG spectral estimation through the Blackman-Tukey method. In: Seventh International Symposium on Signal Processing and Its Applications. 2003. Proceedings. IEEE. 2003; 17-20. doi:10.1109/ISSPA.2003.1224804.
43. Ahmad A, Schlindwein FS, Ng GA. Comparison of computation time for estimation of dominant frequency of atrial electrograms: Fast fourier transform, blackman tukey, autoregressive and multiple signal classification. Journal of Biomedical Science and Engineering. 2010;3:843. doi:10.4236/jbise.2010.39114.