Статья
Методы машинного обучения в прогнозировании исходов и рисков сердечно-сосудистых заболеваний у пациентов с артериальной гипертензией (по материалам ЭССЕ-РФ в Приморском крае)
Цель. Оценить возможность применения технологий искусственного интеллекта в прогнозировании исходов и рисков сердечно-сосудистых заболеваний (ССЗ) у пациентов с артериальной гипертонией (АГ).Материал и методы. Создана компьютерная программа для извлечения в полуавтоматическом режиме информации из анкет респондентов, проанализированы библиотеки с предобработкой данных. Проведен анализ основных и дополнительных показателей факторов риска развития ССЗ (35 параметров) у 2131 человек при выполнении регионального этапа “ЭССЕ-РФ, 20142019гг”. Для создания модели прогнозирования применен высокоуровневый язык Python 2.7 с использованием объектно-ориентированного программирования и включением обработки исключений с поддержкой многопоточных вычислений. С помощью функции рандомизирования сформированы обучающая (488 человек) и тестовая (245 человек) выборки, в которые вошли данные пациентов с установленным диагнозом АГ.Результаты. Распространенность АГ среди обследуемых составила 34,39%. К значимым признакам для прогнозирования развития ССЗ отнесены антропометрические параметры, наличие курения, данные биохимического анализа крови (общий холестерин, АроА, АроВ, глюкоза, Д-димер, С-реактивный белок). В результате 5-летнего наблюдения ССЗ установлены у 235 человек (32,06%) с АГ и у 187 человек (13,38%) без АГ; показатели смертности составили 1,27% у лиц с АГ и 1,12% без АГ. Абсолютный риск фатального исхода среди лиц с АГ (0,037) был значимо выше (p<0,05), чем у пациентов без АГ (0,017). Для построения нейросети (НС) применяли базовую модель Sequential из библиотеки Keras. При машинном обучении в качестве входных данных использовались 26 значимых для развития ССЗ переменных и выходными были определены 9 нейронов, которые соответствовали количеству установленных сердечно-сосудистых событий. Созданная НС обладала предсказующей способностью до 97,9%, что превышало таковую на 34,9% шкалы SCORE.Заключение. Полученные данные указывают на важность фенотипирования факторов риска с использованием антропометрических маркеров и параметров биохимии крови, при определении их значимости в списках 20 топ-предикторов для прогнозирования ССЗ. Основанный на языке Python метод машинного обучения обеспечивает прогнозирование ССЗ согласно стандартным оценкам риска.