1. Virani S.S., Alonso A., Aparicio H.J., Benjamin E.J., Bittencourt M.S., Callaway C.W., Carson A.P., Chamberlain A.M., Cheng S., Delling F.N., Elkind M.S.V., Evenson K.R., Ferguson J.F., Gupta D.K., Khan S.S., Kissela B.M., Knutson K.L., Lee C.D., Lewis T.T., Liu J., Loop M.S., Lutsey P.L., Ma J., Mackey J., Martin S.S., Matchar D.B., Mussolino M.E., Navaneethan S.D., Perak A.M., Roth G.A., Samad Z., Satou G.M., Schroeder E.B., Shah S.H., Shay C.M., Stokes A., VanWagner L.B., Wang N.Y., Tsao C.W., American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation, 2021; 143 (8): e254– e743. doi: 10.1161/CIR.0000000000000950
2. Wu W.Y., Berman A.N., Biery D.W., Blankstein R. Recent trends in acute myocardial infarction among the young. Curr. Opin. Cardiol., 2020; 35 (5): 524– 530. doi: 10.1097/HCO.0000000000000781
3. Garg N., Muduli S.K., Kapoor A., Tewari S., Kumar S., Khanna R., Goel P.K. Comparison of different cardiovascular risk score calculators for cardiovascular risk prediction and guideline recommended statin uses. Indian Heart J., 2017; 69 (4): 458–463. doi: 10.1016/j.ihj.2017.01.015
4. Martins A.M.A., Paiva M.U.B., Paiva D.V.N., de Oliveira R.M., Machado H.L., Alves L.J.S.R., Picossi C.R.C., Faccio A.T., Tavares M.F.M., Barbas C., Giraldez V.Z.R., Santos R.D., Monte G.U., Atik F.A. Innovative Approaches to Assess Intermediate Cardiovascular Risk Subjects: A Review From Clinical to Metabolomics Strategies. Front. Cardiovasc. Med., 2021; 8: 788062. doi: 10.3389/fcvm.2021.788062
5. Клесарева Е.А., Афанасьева О.И., Шерстюк Е.Е., Тмоян Н.А., Разова О.А., Тюрина А.В., Афанасьева М.И., Ежов М.В., Покровский С.Н. Гиперлипопротеидемия (а) и повышенный уровень С-реактивного белка как факторы риска стенозирующего мультифокального атеросклероза у пациентов молодого и среднего возраста. Терапевт. арх., 2022; 4 (94): 479–484. doi: 10.26442/00403660.2022.04.201454
6. Hoogeveen R.M., Pereira J.P.B., Nurmohamed N.S., Zampoleri V., Bom M.J., Baragetti A., Boekholdt S.M., Knaapen P., Khaw K.T., Wareham N.J., Groen A.K., Catapano A.L., Koenig W., Levin E., Stroes E.S.G. Improved cardiovascular risk prediction using targeted plasma proteomics in primary prevention. Eur. Heart. J., 2020; 41 (41): 3998–4007. doi: 10.1093/eurheartj/ehaa648
7. Vaes B., Indestege P., Serneels T., Hegendörfer E., van Peet P.G., Poortvliet R.K.E., Wallemacq P., Gussekloo J., Degryse J. Biomarkers versus traditional risk factors to predict cardiovascular events in very old adults: cross-validated prospective cohort study. BMJ Open, 2020; 10 (6): e035809. doi: 10.1136/bmjopen-2019-035809
8. Курилова О.В., Киселева А.В., Мешков А.Н., Сотникова Е.А., Ершова А.И., Иванова А.А., Лимонова А.С., Драпкина О.М. Шкалы для оценки генетического риска развития сахарного диабета 2-го типа. Профилакт. медицина, 2021; 24 (12): 115–122. doi: 10.17116/profmed202124121115
9. Libby P. Inflammation in atherosclerosis – no longer a theory. Clin. Chem., 2021; 67 (1): 131–142. doi: 10.1093/clinchem/hvaa275
10. Reddy A.S., Uceda D.E., Al Najafi M., Dey A.K., Mehta N.N. PET Scan with Fludeoxyglucose/Computed Tomography in Low-Grade Vascular Inflammation. PET Clin., 2020; 15 (2): 207–213. doi: 10.1016/j.cpet.2019.11.009
11. Hong L.Z., Xue Q., Shao H. Inflammatory Markers Related to Innate and Adaptive Immunity in Atherosclerosis: Implications for Disease Prediction and Prospective Therapeutics. J. Inflamm. Res., 2021; 14: 379–392. doi: 10.2147/JIR.S294809
12. Björkegren J.L.M., Lusis A.J. Atherosclerosis: Recent developments. Cell., 2022; 185 (10): 1630–1645. doi: 10.1016/j.cell.2022.04.004
13. Li H., Zhang P., Yuan S., Tian H., Tian D., Liu M. Modeling analysis of the relationship between atherosclerosis and related inflammatory factors. Saudi J. Biol. Sci., 2017; 24 (8): 1803–1809. doi: 10.1016/j.sjbs.2017.11.016
14. Wainstein M.V., Mossmann M., Araujo G.N., Gonçalves S.C., Gravina G.L., Sangalli M., Veadrigo F., Matte R., Reich R., Costa F.G., Andrades M., da Silva A.M.V., Bertoluci M.C. Elevated serum interleukin-6 is predictive of coronary artery disease in intermediate risk overweight patients referred for coronary angiography. Diabetol. Metab. Syndr., 2017; 9: 67. doi: 10.1186/s13098-017-0266-5
15. Стахнёва Е.М., Рагино Ю.И. Современные методы исследования атеросклероза и ишемической болезни сердца: проточная цитометрия. Бюл. сиб. медицины. 2021; 20 (2): 184–190. doi: 10.20538/1682-0363-2021-2184-190
16. Baumer Y., Gutierrez-Huerta C.A., Saxena A., Dagur P.K., Langerman S.D., Tamura K., Ceasar J.N., Andrews M.R., Mitchell V., Collins B.S., Yu Q., Teague H.L., Playford M.P., Bleck C.K.E., Mehta N.N., McCoy J.P., Powell-Wiley T.M. Immune cell phenotyping in low blood volumes for assessment of cardiovascular disease risk, development, and progression: a pilot study. J. Transl Med., 2020; 18 (1): 29. doi: 10.1186/s12967-020-02207-0
17. Каледина Е.А., Каледин О.Е., Кулягина Т.И. Применение методов машинного обучения для предсказания сердечнососудистых заболеваний на малых наборах данных. Проблемы информатики, 2022; 1 (54): 66–75. doi: 10.24412/2073-0667-2022-1-66-76
18. Sánchez-Cabo F., Rossello X., Fuster V., Benito F., Manzano J.P., Silla J.C., Fernández-Alvira J.M., Oliva B., Fernández-Friera L., López-Melgar B., Mendiguren J.M., Sanz J., Ordovás J.M., Andrés V., Fernández-Ortiz A., Bueno H., Ibáñez B., GarcíaRuiz J.M., Lara-Pezzi E. Machine Learning Improves Cardiovascular Risk Definition for Young, Asymptomatic Individuals. J. Am Coll. Cardiol., 2020; 76 (14): 1674–1685. doi: 10.1016/j.jacc.2020.08.017
19. Генкель В.В., Кузнецова А.С., Лебедев Е.В., Шапошник И.И. Факторы, связанные с наличием прогностически неблагоприятного каротидного атеросклероза у мужчин и женщин старше 40 лет. Атеросклероз и дислипидемии, 2021; 4 (45): 33–40. doi: 10.34687/2219-8202.JAD.2021.04.0004
20. Johri A.M., Nambi V., Naqvi T.Z., Feinstein S.B., Kim E.S.H., Park M.M., Becher H., Sillesen H. Recommendations for the Assessment of Carotid Arterial Plaque by Ultrasound for the Characterization of Atherosclerosis and Evaluation of Cardiovascular Risk: From the American Society of Echocardiography. J. Am Soc. Echocardiogr., 2020; 33 (8): 917–933. doi: 10.1016/j.echo.2020.04.021
21. Vassalle C. New biomarkers and traditional cardiovascular risk scores: any crystal ball for current effective advice and future exact prediction? Clin. Chem. Lab. Med., 2018; 56 (11): 1803–1805. doi: 10.1515/cclm2018-0490
22. Stakhneva E.M., Striukova E.V., Ragino Y.I. Proteomic Studies of Blood and Vascular Wall in Atherosclerosis. Int. J. Mol. Sci., 2021; 22 (24): 13267. doi: 10.3390/ijms222413267
23. Bargieł W., Cierpiszewska K., Maruszczak K., Pakuła A., Szwankowska D., Wrzesińska A., Gutowski Ł., Formanowicz D. Recognized and Potentially New Biomarkers-Their Role in Diagnosis and Prognosis of Cardiovascular Disease. Medicina (Kaunas), 2021; 57 (7): 701. doi: 10.3390/medicina57070701
24. Fani L., van der Willik K.D., Bos D., Leening M.J.G., Koudstaal P.J., Rizopoulos D., Ruiter R., Stricker B.H.C., Kavousi M., Ikram M.A., Ikram M.K. The association of innate and adaptive immunity, subclinical atherosclerosis, and cardiovascular disease in the Rotterdam Study: A prospective cohort study. PLoS Med., 2020; 17 (5): e1003115. doi: 10.1371/journal.pmed.1003115
25. Hong L.Z., Xue Q., Shao H. Inflammatory Markers Related to Innate and Adaptive Immunity in Atherosclerosis: Implications for Disease Prediction and Prospective Therapeutics. J. Inflamm. Res., 2021; 14: 379–392. doi: 10.2147/JIR.S294809
26. Feinstein M.J., Buzkova P., Olson N.C., Doyle M.F., Sitlani C.M., Fohner A.E., Huber S.A., Floyd J., Sinha A., Thorp E.B., Landay A., Freiberg M.S., Longstreth W.T.Jr., Tracy R.P., Psaty B.M., Delaney J.A. Monocyte subsets, T cell activation profiles, and stroke in men and women: The Multi-Ethnic Study of Atherosclerosis and Cardiovascular Health Study. Atherosclerosis, 2022; 351: 18–25. doi: 10.1016/j.atherosclerosis.2022.05.007
27. Genkel V., Dolgushin I., Baturina I., Savochkina A., Nikushkina K., Minasova A., Kuznetsova A., Shaposhnik I. Associations between Circulating VEGFR2hiNeutrophils and Carotid Plaque Burden in Patients Aged 40-64 without Established Atherosclerotic Cardiovascular Disease. J. Immunol. Res., 2022; 2022: 1539935. doi: 10.1155/2022/1539935
28. Долгушин И.И., Генкель В.В., Батурина И.Л., Савочкина А.Ю., Минасова А.А., Никушкина К.В., Пыхова Л.Р., Кузнецова А.С., Шапошник И.И. Взаимосвязи иммуносупрессорных нейтрофилов и показателей врожденного и адаптивного иммунитета у пациентов с субклиническим атеросклерозом. Мед. иммунология, 2022; 24 (2): 283–294. doi: 10.15789/1563-0625-IBI-2463
29. Gupta S., Maratha A., Siednienko J., Natarajan A., Gajanayake T., Hoashi S., Miggin S. Analysis of in flammatory cytokine and TLR expression levels in Type 2 Diabetes with complications. Sci. Rep., 2017; 7 (1): 7633. doi: 10.1038/s41598-017-07230-8
30. Sadeghi K., Wisgrill L., Wessely I., Diesner S.C., Schüller S., Dürr C., Heinle A., Sachet M., Pollak A., Förster-Waldl E., Spittler A. GM-CSF Down-Regulates TLR Expression via the Transcription Factor PU.1 in Human Monocytes. PLoS One., 2016; 11 (10): e0162667. doi: 10.1371/journal.pone. 0162667
31. Zamora C., Cantó E., Nieto J.C., Angels Ortiz M., Juarez C., Vidal S. Functional consequences of CD36 downregulation by TLR signals. Cytokine, 2012; 60 (1): 257–265. doi: 10.1016/j.cyto.2012.06.020
32. Газатова Н.Д., Меняйло М.Е., Малащенко В.В., Гончаров А.Г., Мелащенко О.Б., Морозова Е.М., Селедцов В.И. Прямые эффекты гранулоцитарномакрофагального колониестимулирующего фактора на функциональные свойства моноцитов/макрофагов человека. Мед. иммунология, 2019; 21 (3): 419–426. doi: 10.15789/1563-0625-2019-3-419-426
33. Boyer J.F., Balard P., Authier H., Faucon B., Bernad J., Mazières B., Davignon J.L., Cantagrel A., Pipy B., Constantin A. Tumor necrosis factor alpha and adalimumab differentially regulate CD36 expression in human monocytes. Arthritis Res. Ther., 2007; 9 (2): R22. doi: 10.1186/ar2133
34. Herrero-Cervera A., Soehnlein O., Kenne E. Neutrophils in chronic inflammatory diseases. Cell. Mol. Immunol., 2022; 19 (2): 177–191. doi: 10.1038/s41423-021-00832-3
35. Qi X., Yu Y., Sun R., Huang J., Liu L., Yang Y., Rui T., Sun B. Identification and characterization of neutrophil heterogeneity in sepsis. Crit. Care., 2021; 25 (1): 50. doi: 10.1186/s13054-021-03481-0
36. Filep J.G. Targeting Neutrophils for Promoting the Resolution of Inflammation. Front. Immunol., 2022; 13: 866747. doi: 10.3389/fimmu.2022.866747
37. Salminen A. Increased immunosuppression impairs tissue homeostasis with aging and age-related diseases. J. Mol. Med. (Berl.), 2021; 99 (1): 1–20. doi: 10.1007/s00109-020-01988-7
38. Williams M.C., Newby D.E. Machine learning to predict cardiac events in asymptomatic individuals. Atherosclerosis, 2021; 318: 38–39. doi: 10.1016/j.atherosclerosis.2020.12.006