Статья
РЕНИН-АНГИОТЕНЗИН-АЛЬДОСТЕРОНОВАЯ СИСТЕМА И РЕПЛИКАТИВНОЕ КЛЕТОЧНОЕ СТАРЕНИЕ: ИХ ВЗАИМОДЕЙСТВИЕ В ХОДЕ СТАРЕНИЯ СОСУДОВ
Рассматривается проблема сосудистого старения. Среди признаков сосудистого старения особое внимание уделяется активации ренин-ангиотензин-альдостероновой системы как источнику хронического воспаления и окислительного стресса и ее связи с репликативным клеточным старением. Также рассматриваются возможные пути воздействия на данные процессы.
1. Population Ageing and Development 2012/Wallchart. New York: United Nations; 2012.
2. Cardiovascular diseases (CVDs). Fact sheet N°317, Updated March 2013. Available at: http://www.who.int/mediacentre/factsheets/fs317/en/. Accessed by 31.05.2014.
3. Sawabe M. Vascular aging: from molecular mechanism to clinical significance. Geriatr Gerontol Int 2010;10(Suppl 1):S213-20.
4. Glass CK, Witztum JL. Atherosclerosis the road ahead. Cell 2001;104:503-16.
5. Vasan RS, Demissie S, Kimura M, et al. Association of Leukocyte Telomere Length with Circulating Biomarkers of the Renin-Angiotensin-Aldosterone System: The Framingham Heart Study. Circulation 2008; 117(9): 1138-44.
6. Lambeth JD. Nox enzymes, ROS, chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med 2007; 43:332-47.
7. Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 2008; 31(Suppl 2):S170-80.
8. Rocchini AP, Moorehead C, DeRemer S, et al. Hyperinsulinemia and the aldosterone and pressor responses to angiotensin II. Hypertension1990; 15:861-6.
9. Nistala R, Whaley-Connell A. Sowers JR Redox control of renal function and hypertension. Antioxid Redox Signal 2008; 10(12):2047-89.
10. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000; 86:494-501.
11. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 1993; 90(17):7915-22.
12. Timmermans PB, Wong PC, Chiu AT, et al. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev1993; 45:205-51.
13. Urata H, Boehm KD, Philip A, et al. Cellular localization and regional distribution of an angiotensin Iformingchymase in the heart. J Clin Invest 1993; 91: 1269-81.
14. Huang XR, Chen WY, Truong LD, Lan HY. Chymase is upregulated in diabetic nephropathy: implications for an alternative pathway of angiotensin II-mediated diabetic renal and vascular disease. J Am SocNephrol 2003; 14: 1738-47.
15. Bacani C, Frishman WH. Chymase: a new pharmacologic target in cardiovascular disease. Cardiol Rev 2006; 14: 187-93
16. Miyazaki M, Takai S. Tissue angiotensin II generating system by angiotensin-converting enzyme and chymase. J Pharmacol Sci 2006 ; 100: 391-7.
17. Simpson SA, Tait JF, Wettstein A, et al. Constitution of aldosterone, a new mineralocorticoid. Experientia1954;10:132-3.
18. Goodfriend TL, Egan BM, Kelley DE. Aldosterone in obesity. Endocr Res 1998; 24:789–96.
19. Brown NJ. Aldosterone and vascular inflammation. Hypertension 2008; 51:161-7.
20. Wei Y, Whaley-Connell AT, Habibi J, et al. Mineralocorticoid receptor antagonism attenuates vascular apoptosis and injury via rescuing protein kinase B activation. Hypertension 2009; 53(2):158-65.
21. Hirono Y, Yoshimoto T, Suzuki N, et al. Angiotensin II receptor type 1-mediated vascular oxidative stress and proinflammatory gene expression in aldosterone-induced hypertension: the possible role of local renin-angiotensin system. Endocrinology 2007; 148:1688-96.
22. Stas S, Whaley-Connell A, et al. Mineralocorticoid receptor blockade attenuates chronic overexpression of the renin-angiotensin–II-aldosterone system stimulation of reduced NADPH oxidase and cardiac remodeling. Endocrinology 2007; 148:3773-80.
23. Van Kats JP, Danser AH, van Meegen JR, et al. Angiotensin production by the heart: a quantitative study in pigs with the use of radiolabeled angiotensin infusion. Circulation 1998; 98: 73-81.
24. Kobori H, Pieto-Carrasquero MC, Ozawa Y, Navar LG. AT1 receptor mediated augmentation of intrarenal angiotensinogen in angiotensin II dependent hypertension. Hypertension 2004; 43: 1126-32.
25. Moulik S, Speth RC, Turner BB, Rowe BP. Angiotensin II receptor subtype distribution in the rabbit brain. Exp Brain Res 2002; 142: 275-83.
26. Ghiani BU, Masini MA. Angiotensin II bindings sites in the rat pancreas and their modulation after sodium loading and depletion. Comp Biochem Physiol A Physiol 1995; 111: 439-44.
27. Thomas WG, Sernia C. Theimmunocytochemical localization of angiotensinogen in the rat ovary. Cell tissue Res 1990; 261: 367-73.
28. Iwai N, Inagami T, Ohmichi N, Kinoshita M Renin is expressed in rat macrophage/monocyte cells. Hypertension 1996; 27: 399-403.
29. Karlsson C, Lindell K, Ottoson M, et al. Human adipose tissue expresses angiotensinogen and enzymes required for its conversion to angiotensin II. J Clin Endocrinol Metab 1998; 83: 3925-9.
30. de Mello W. Effect of extracellular and intracellular angiotensin on heart cell function; on the cardiac renin-angiotensin system. RegulPept 2003; 114: 87-90.
31. Sowers JR, Whaley-Connell A, Epstein M. The emerging clinical implications of the role of aldosterone in the metabolic syndrome and resistant hypertension. Ann Intern Med 2009; 150:776-83.
32. Whaley-Connell A, Sowers JR. Aldosterone and risk for insulin resistance. Hypertension 2011;58(6):998-1000.
33. de Cavanagh EM, Inserra F, Ferder M, Ferder L. From mitochondria to disease: role of the renin-angiotensin system. Am J Nephrol 2007; 27: 545-3.
34. Wilson SK. Role of oxygen-derived free radicals in acute angiotensin II-induced hypertensive vascular disease in the rat. Circ Res 1990; 66: 722-34.
35. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulaes NADH and NADPH oxidase activity in cultures vascular smooth muscle cells. Circ Res 1994; 74: 1141-8.
36. Suzuki Y, Ruiz-Ortega M, Lorenzo O, et al. Inflammation and angiotensin II. IJBCB 2003; 35:881-900.
37. Min LJ, Mogi M, Iwai M, Horiuchi M. Signaling mechanisms of angiotensin II in regulating vascular senescence. Ageing Res Rev 2009; 8: 113-121
38. Wong JM, Collins K. Telomere maintenance and disease. Lancet 2003; 362 (9388): 983-8.
39. Greider CW, Blackburn EH. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 1987;51:887-98.
40. Blackburn EH, Greider CW, Henderson E, et al. Recognition and elongation of telomeres by telomerase. Genome 1989;31:553-60.
41. Fitzpatrick AL, Kronmal RA, Gardner JP, et al. Leukocyte Telomere Length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol 2007; 165 (1); 14-21.
42. O'Donovan A, Pantell MS, Puterman E, et al. Cumulative inflammatory load is associated with short leukocyte Telomere Length in the Health, Aging and Body Composition Study. PLoS One. 2011; 6 (5): e19687.
43. Benetos A, Gardner JP, Zureik M, et al. Short telomeres are associated withincreased carotid atherosclerosis in hypertensive subjects. Hypertension 2004; 43 (2): 182-5.
44. Willeit P, Willeit J, Brandstatter A, et al. Cellular aging reflected by leukocyte Telomere Length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc Biol 2010; 30 (8): 1649-56.
45. Parks CG, DeRoo LA, Miller DB, et al. Employment and work schedule are related to Telomere Length in women. Occup Environ Med 2011; 68 (8): 582-9.
46. Dudognon C, Pendino F, Hillion J, et al. Death receptor signaling regulatory function for telomerase: hTERT abolishes TRAIL-induced apoptosis, independently of telomere maintenance. Oncogene 2004;23:7469-74.
47. Strazhesko ID, Akasheva DU, Dudinskaya EN, Tkacheva ON. Vascular ageing: main symptoms and mechanisms. Cardiovascular Therapy and Prevention 2012; 11(4): 93-100 (Стражеско И.Д., Акашева Д.У., Дудинская Е.Н., Ткачева О.Н. Старение сосудов: основные признаки и механизмы. Кар-диоваскулярная терапия и профилактика 2012; 11(4): 93-100).
48. Ogami M, Ikura Y, Ohsawa M, et al. Telomere shortening in human coronary artery diseases. Arterioscler Thromb Vasc Biol 2004; 24 (3): 546-50.
49. Benetos A, Okuda K, Lajemi M, et al. Telomere Length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension 2001; 37(2):381-5.
50. Nawrot TS, Staessen JA, Gardner JP, et al. Telomere Length and possible link to X chromosome. Lancet 2004; 363 (9408):507-10.
51. Boytsov SA, Strazhesko ID, Akasheva DU, et al. Insulin resistance: good or bad? Development mechanisms and the association with age-related vascular changes. Cardiovascular Therapy and Prevention 2013; 12(4): 91-7 (Бойцов С.А., Стражеско И.Д., Акашева Д.У., и др. Инсулинорезистент-ность: благо или зло? механизмы развития и связь с возраст-ассоциированными изменения-ми сосудов. Кардиоваскулярная Терапия и Профилактика 2013; 12(4): 91-7).
52. Demissie S, Levy D, Benjamin EJ, et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell 2006; 5:325-30.
53. Santos JH, Meyer JN, Skorvaga M, et al. Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 2004;3:399-411.
54. Ahmed S, Passos JF, Birket MJ, et al. Telomerase does not counteract telomere shorteningbut protects mitochondrial function under oxidative stress. J Cell Sci 2008;121:1046-53.
55. Haendeler J, Drose S, Buchner N, et al. Mitochondrial telomerase reverse transcriptasebinds to and protects mitochondrial DNA and function from damage. Arterioscler Thromb Vasc Biol 2009;29:929-35.
56. Gleichmann U, Gleichmann US, Gleichmann S. From cardiovascular prevention to anti-aging medicine: influence on telomere and cell aging. Dtsch Med Wochenschr 2011;136(38):1913-6.
57. Ornish D, Lin J, Daubenmier J, et al. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol 2008;9(11):1048-57.
58. Spyridopoulos I, Haendeler J, Urbich C, et al. Statins enhancemigratorycapacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitorcells. Circulation 2004; 110: 3136-42.
59. Strazhesko ID, Akasheva DU, Dudinskaya EN, et al. Renin-angiotinsin-aldosterone system and vascular aging. Cardiology 2013; (7): 78-84 (Стражеско И.Д., Акашева Д.У., ДудинскаяЕ.Н., и др. Ре-нин-ангиотензин-альдостероновая система и старение сосудов. Кардиология 2013; (7): 78-84).
60. Anderson TJ, Elstein E, Haber H, Charbonneau F. Comparative study of ACEinhibition, angiotensin II antagonism, and calcium channel blockade on flowmediated vasodilation in patients with coronary disease (BANFF study). J Am Coll Cardiol 2000;35:60-6.
61. Ghiadoni L, Magagna A, Versari D, et al. Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension 2003;41:1281-6.
62. Antony I, Lerebours G, Nitenberg A. Angiotensin-converting enzyme inhibition restores flow-dependent and cold pressor test-induced dilations in coronary arteries of hypertensive patients. Circulation 1996;94:3115-22.
63. Ceconi C, Fox K, Remme W, et al. ACE inhibition with perindopril and endothelial function. Results of a substudy of the EUROPA study: PERTINENT. Cardiovasc Res 2007;73:237-46.
64. Ferrari R, Guardigli G, Ceconi C. Secondary prevention of CAD with ACE inhibitors: a struglle between life and death of the endothelium. Cardiovasc Drug Ther 2010;24:331-9.
65. Ferrari R. Angiotensin-converting enzyme inhibition in cardiovascular disease: evidence with perindopril. Expert Rev Cardiovasc Ther 2005; 3:15-29.
66. Ceconi C, Francolini G, Bastianon D, et al. Differences in the effect of angiotensin-converting enzyme inhibitors on the rate of endothelial cell apoptosis: in vitro and in vivo studies. Cardiovasc Drug Ther 2007;21:423-29.
67. Ceconi C, Francolini G, Olivares A, et al. Angiotensinconverting enzyme (ACE) inhibitors have different selectivity for bradykinin binding sites of human somatic ACE. Eur J Pharmacol 2007;577:1-6.
68. Goon PK, Boos CJ, Lip GY. Circulating endothelial cells: markers of vascular dysfunction. Clin Lab 2005;51:531-8.