1. Levy D, Kenchaiah S, Larson MG, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med 2002;347:1397-402.
2. Stewart S, MacIntyre K, Hole DJ, et al. More ‘malignant’ than cancer? Five-year survival following a first admission for heart failure. Eur J Heart Fail 2001;3:315-22.
3. CihakovaD., Rose N.R. Pathogenesis of myocarditis and dilated cardiomyopathy.Adv Immunol 2008;99:9.
4. Dhalla NS, Saini-Chohan HK, Rodriguez-Leyva D, et al. Subcellular remodeling may induce cardiac dysfunction in congestive heart failure. Cardiovasc Res 2009; 81:429-38.
5. Distefano G, Siacca P. Molecular pathogenesis of myocardial remodeling and new potential therapeutic targets in chronic heart failure. Italian Journal of Pediatrics 2012; 38:41
6. Kuwahara K, Nakao K. New molecular mechanisms for cardiovascular disease: transcriptional pathways and novel therapeutic targets in heart failure. J Pharmacol Sci 2011; 116:337-42
7. Diwan A, Dorn GW II. Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets. Physiology 2007; 22:56-64
8. Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 2010; 72: 19-44.
9. Bergmann O, Zdunek S, Alkass K, et al. Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover. Exp Cell Res 2011; 317: 188-94.
10. Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science 2009; 324: 98-102.
11. Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOSTrandomised controlled clinical trial. Lancet 2004; 364: 141-48.
12. Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006; 355: 1199-209.
13. Janssens S, Dubois C, Bogaert J, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 2006; 367: 113-21.
14. Zimmet H, Porapakkham P, Porapakkham P, et al. Shortand long-term outcomes of intracoronary and endogenously mobilized bone marrow stem cells in the treatment of ST-segment elevation myocardial infarction: a meta-analysis of randomized control trials. Eur J Heart Fail 2011; 14: 91-105.
15. Assmus B, Rolf A, Erbs S, et al, and the REPAIR-AMI Investigators. Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail 2010; 3: 89-96.
16. Strauer BE, Yousef M, Schannwell CM. The acute and long-term effects ofintracoronary Stem cell Transplantation in 191 patients with chronic heARt failure: the STAR-heart study. Eur J Heart Fail 2010;12(7):721-9.
17. OrlicD, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701-05.
18. Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002;416: 542-45.
19. Mirotsou M, Jayawardena TM, Schmeckpeper J, et al. Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 2011; 50: 280-89.
20. Goumans M-J, de Boer TP, Smits AM, et al.TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res 2007; 1: 138-49.
21. van Vliet P, Roccio M, Smits AM, et al. Progenitor cells isolated from the human heart: a potential cell source for regenerative therapy. Neth Heart J 2008;16:163-9.
22. Smits AM, van Vliet P, Metz CH, et al. Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nat Protoc 2009; 4:232-43.
23. Boer TPD, Veen TABV, Jonsson MKB, et al. Human cardiomyocyte progenitor cell derived cardiomyocytes display a maturated electrical phenotype. J Mol Cell Cardiol 2010; 48: 254-60.
24. van Vliet P, Smits AM, de Boer TP, et al. Foetal and adult cardiomyocyte progenitor cells have different developmental potential. J Cell Mol Med 2010; 14: 861-70.
25. Hierlihy AM, Seale P, Lobe CG, et al. The post-natal heart contains a myocardial stem cell population. FEBS Lett 2002; 530: 239-243.
26. Bearzi C, Rota M,Hosoda T, et al.Human cardiac stem cells. Proc NatlAcad Sci U SA2007;104:1406873.
27. Pevsner-Fischer M, Morad V, Cohen-Sfady M et al. Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 2007;109(4):1422-32.
28. Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 2003; 100: 12313-18,
29. Matsuura K, Nagai T, Nishigaki N, et al. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 2004; 279: 11384-91.
30. Hsieh PCH, Segers VFM, Davis ME, et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 2007;13:970-4.
31. Torella D, Ellison GM, Mèndez-Ferrer S, et al. Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration. Nat Clin Pract Cardiovasc Med 2006;3(Suppl 1):s8-s13.
32. Smith RR, Barile L, Cho HC, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endo¬myocardial biopsy specimens. Circulation 2007; 115: 896-908.
33. Urbanek K, Torella D, Sheikh F, et al. Myocardial regeneration by activation of cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA 2005; 102: 8692-7.
34. Pouly J, Bruneval P, Mandet C, et al. Cardiac stem cells in the real world.J Thorac Cardiovasc Surg 2008; 135: 673-678.
35. Majno G, Joris I. Apoptosis, oncosis and necrosis. Am J Pathol 1995;146:3-15.
36. Kostin S. Pathways of myocyte death: implications for development of clinical laboratory biomarkers. Adv Clin Chem 2005;40:37-98.
37. Vigliano CA, Cabeza Meckert PM, Diez M, et al. Cardiomyocyte hypertrophy, oncosis, and autophagic vacuolization predict mortality in idiopathic dilated cardiomyopathy with advanced heart failure. J Am Coll Cardiol 2011;57:1523-31.
38. Kostin S, Pool L, Elsasser A, et al. Myocytes die by multiple mechanisms in failing human hearts. Circ Res 2003;92:715-24.
39. Hein S, Arnon E, Kostin S, et al. Progression from compensated hypertrophy to failure in the pressureoverloaded human heart: structural deterioration and compensatory mechanisms. Circulation 2003;107:984-91.
40. Elsasser A, Voigt AM, Nef H, et al. Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death. J Am Coll Cardiol 2004;43:2191-9.
41. Twerenbold R, Jaffe A, Reichlin T, Reiter M, Mueller C: High-sensitive troponin T measurements: what do we gain and what are the challenges? Eur Heart J 2012; 33(5):579-86.
42. de Lemos JA, Drazner MH, Omland T, et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA 2011;304:250312.
43. Hessel MH, Michielsen EC, Atsma DE, et al. Release kinetics of intact and degraded troponin I and T after irreversible cell damage. Exp Mol Pathol 2008;85:90-5.