Статья
ОСНОВНЫЕ НАПРАВЛЕНИЯ МОДИФИКАЦИИ ПОВЕРХНОСТИ МЕТАЛЛИЧЕСКИХ ЭНДОВАСКУЛЯРНЫХ СТЕНТОВ В РЕШЕНИИ ПРОБЛЕМЫ РЕСТЕНОЗОВ (ОБЗОР, 2 ЧАСТЬ)
Вторая часть обзора посвящена вариантам модификации металлических стентов для ускорения эндотелизации in situ. Представлены разработки. направленные на захват эндотелиальных прогениторных клеток из кровотока с помощью специфических антител. Описаны возможности улучшения адгезии и интеграции эндотелиальных клеток на поверхности за счет формирования сайтов клеточного распознавания и имитация структур внеклеточного матрикса. Проанализированы различные способы физической и химической модификации, способствующие созданию условий для скорейшего формирования функционально состоятельного эндотелиального слоя на искусственных поверхностях. Определен круг проблем и ограничений в использовании каждого из методов.
1. Luo C., Zheng Y., Diao Z., Qiu J. and Wang G. Research Progress and Future Prospects for Promoting Endothelialization on Endovascular Stents and Preventing Restenosis. J. Med. and Biol. Engin. 2011; 31(5): 307-316
2. Aoki J., Serruys P. W., Beusekom H.et al. Endothelial progenitor cell capture by stents coated with antibody against CD34. J. Am. Colle. Cardi. 2005; 45: 1575-1597.
3. Markway B.D., McCarty O.J., Marzec U.M., Courtman D.W., Hanson S.R., Hinds M.T. Capture of flowing endothelial cells using surfaceimmobilized anti-kinase insert domain receptor antibody. Tissue Eng Part C Methods. 2008 Jun; 14(2):97-105. doi: 10.1089/ten.tec.2007.0300
4. Wu X., Yin T., Tian J., Tang C., Huang J., Zhao Y. et al. Distinctive effects of CD34- and CD133-specific antibody-coated stents on reendothelialization and in-stent restenosis at the early phase of vascular injury. Regen Biomater. 2015; 2(2): 87–96. doi: 10.1093/rb/rbv007
5. Rotmans J.I., Heyligers J.M., Verhagen H.J., Velema E., Nagtegaal M.M., de Kleijn D.P. et al. In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation. 2005 Jul 5;112(1):12-8.
6. Chen J. L., Cao J. J., Wang J., Chen Z. Y., Zhao Y. C., Li Q. et al. Investigation on hemocompatibility and endothelialization of titanium vascular implants modified by PEG and CD34 antibody. J. Colloid Interface Sci. 2012; 368: 636–647. doi:10.1016/j.jcis.2011.11.039
7. Butler J.E., Ni L., Brown W.R., Joshi K.S., Chang J., Rosenberg B., Voss E.W. The immunochemistry of sandwich ELISAs-VI. Greater than 90% of monoclonal and 75% of polyclonal anti-fluorescyl capture antibodies (CAbs) are denatured by passive adsorption. Mol. Immunol 1993;30:1165–1175.
8. Lu B, Smyth MJ, Kennedy RO. Oriented immobilization of antibodies and its applications to immunoassays and immunosensors. Analyst 1996;121:29R–32R
9. Li Q.L., Huang N., Chen C., Chen J.L., Xiong K.Q., Chen J.Y. et al. Oriented immobilization of anti-CD34 antibody on titanium surface for selfendothelialization induction. J Biomed Mater Res A. 2010 Sep 15; 94(4):1283-93. doi: 10.1002/jbm.a.32812
10. Simper D., Stalboerger P. G., Panetta C. J., Wang S. H. and Caplice N. M.. Smooth muscle progenitor cells in human blood. Circulation 2002; 106: 1199-1204
11. Sata M., Saiura A., Kunisato A. et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat. Med. 2002; 8: 403-409
12. Fadini G.P., Losordo D., Dimmeler S. Critical Reevaluation of Endothelial Progenitor Cell Phenotypes for Therapeutic and Diagnostic Use. Circulation Research. 2012; 110: 624-637 doi: 10.1161/CIRCRESAHA.111.243386
13. Romagnani, P., Annunziato, F., Liotta, F., Lazzeri, E., Mazzinghi, B., Frosali, F. et al. CD14+CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circ Res. 2005; 97: 314,
14. Friedrich E.B., Walenta K., Scharlau J., Nickenig G., and Werner N. CD34-/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ Res. 2006; 98: e20,
15. Peichev M., Naiyer A. J., Pereira D. et al. Expression of VEGFR-2 and CD133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000; 95: 952-958.
16. Asahara T., Murohara T., Sullivan A. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science .1997; 275: 964-967
17. Gehling U. M., Ergьn S., Schumacher U., et al. In vitro differentiation of endothelial cells from CD133 positive progenitor cells,” Blood. 2000; 95: 3106-3112.
18. Casamassimi A., Balestrieri M. L., Fiorito C. et al. Comparison between total endothelial progenitor cell isolation versus enriched CD133+ culture. J. Biochem. 2007; 141: 503-511.
19. Hristov M. and Weber C. Endothelial progenitor cells:characterization, pathophysiology, and possible clinical relevance. J. Cell. Mol. Med. 2004; 8: 498-508.
20. Yang J., Ii M., Kamei N. et al. CD34+ Cells Represent Highly Functional Endothelial Progenitor Cells in Murine Bone Marrow. Plos one. 2011; 6 (5): e20219
21. Zampetaki A., Kirton J. P. and Xu Q. Vascular repair by endothelial progenitor cells. Cardiovasc. Res. 2008; 78: 413-421
22. Schatteman G. C., Dunnwald M. and Jiao C. Biology of bone marrow derived endothelial cell precursors. Am. J. Physiol. Heart Circ. Physiol. 2007; 292: H1-H18
23. Breaker R. R. Natural and engineered nucleic acids as tools to explore biology,” Nature. 2004; 432: 838-845
24. Guo K.T., Schаfer R., Paul A., Gerber A., Ziemer G., Wendel H.P. A new technique for the isolation and surface immobilization of mesenchymal stem cells from whole bone marrow using high-specific DNA aptamers. Stem Cells. 2006; 24 (10): 2220-2231.
25. Ohuchi S. P., Ohtsu T. and Nakamura Y.. Selection of RNA aptamers against recombinant transforming growth factor-beta type III receptor displayed on cell surface. Biochimie. 2006; 88:897-904.
26. Mallikaratchy P., Tang Z., Kwame S., Meng L., Shangguan D.and Tan W. Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt’s lymphoma cells. Mol. Cell Proteomics. 2007; 6: 2230-2238.
27. Raddatz M. S., Dolf A., Endl E., Knolle P., Famulok M. and Mayer G. Enrichment of celltargeting and population-specific aptamers by fluorescence-activated cell sorting,” Angew. Chem. Int. Ed. Engl. 2008; 47: 5190-5193
28. Hoffmann J., Paul A., Harwardt M.J. et al. Immobilized DNA aptamers used as potent attractors for porcine endothelial precursor cells. J. Biomed. Mater. Res. A. 2008; 84: 614-621
29. Weng Y., Chen J., Tu Q. et al. Biomimetic modification of metallic cardiovascular biomaterials: from function mimicking to endothelialization in vivo. Interface focus. 2012; doi:10.1098/rsfs.2011.0126
30. Gupta A., Majumdar P., Amit J., Rajesh A., Singh S. B. Chakraborty M. Cell viability and growth on metallic surfaces: in vitro studies. Trends Biomater. Artif. Organs. 2006; 20: 84–89.
31. Prasad C. K. & Krishnan L. K. Regulation of endothelial cell phenotype by biomimetic matrix coated on biomaterials for cardiovascular tissue engineering. Acta Biomater. 2008; 4: 182-191
32. Volcker N., Klee D., Hocker H. & Langefeld S. Functionalization of silicone rubber for the covalent immobilization of fibronectin. J. Mater. Sci.: Mater. Med. 2001; 12: 111– 119.
33. Zhang Y., Wang W., Feng Q., Cui F. & Xu Y. A novel method to immobilize collagen on polypropylene film as substrate for hepatocyte culture. Mater. Sci.Eng. 2006; 26: 657– 663.
34. Ge S. N., Chen J. Y., Leng Y. X. & Huang N. Laminin immobilized on titanium oxide films for enhanced human umbilical vein endothelial cell adhesion and growth. Key Eng. Mater. 2007; 342–343: 305 –308.
35. Zhang Y., Chai C., Jiang X. S., Teoh S. H. & Leong K. W. Fibronectin immobilized by covalent conjugation or physical adsorption shows different bioactivity on aminated-PET. Mater. Sci. Eng. 2007; 27: 213 – 219.
36. Beumer S., Heijnen-Snyder G. J., IJsseldijk M. J., de Groot P. G. & Sixma J. J. Fibronectin in an extracellular matrix of cultured endothelial cells supports platelet adhesion via its ninth type III repeat: a comparison with platelet adhesion to isolated fibronectin. Arterioscler. Thromb. Vasc. Biol. 2000; 20: 16 –25.
37. Hirst S. J., Twort C.H.C. & Lee T.H. Differential effects of extracellular matrix proteins on human airway smooth muscle cell proliferation and phenotype. Am. J. Respir. Cell. Mol. Biol. 2000; 23: 335 –344
38. Li G. C., Yang P., Qin W., Maitz M. F., Zhou S. & Huang N. The effect of coimmobilizing heparin and fibronectin on titanium on hemocompatibility and endothelialization. Biomaterials. 2011; 32: 4691–4703. doi:10.1016/j.biomaterials
39. Chen, J. L., Chen, C., Chen, Z. Y., Chen, J. Y., Li, Q. L. & Huang, N. Collagen/heparin coating on titanium surface improves the biocompatibility of titanium applied as a blood-contacting biomaterial. J. Biomed. Mater. Res. A. 2010; 95: 341–349. doi:10.1002/jbm.a.32847
40. Nagai N, Nakayama Y, Nishi S, Munekata M. Developmentof novel covered stents using salmon collagen. J Artif Organs. 2009; 12: 61–66
41. Kämmerer P.W., Heller M., Brieger J., Klein M.O., Al-Nawas B.and Gabriel M. Immobilisation of linear and cyclic RGD-peptides on titanium surfaces and their impact on endothelial cell adhesion and proliferation. Europpean cells and Materials. 2011; 21: 364-372
42. Rüdiger Blindt, Felix Vogt, Irina Astafieva et al. A Novel Drug-Eluting Stent Coated With an Integrin-Binding Cyclic Arg-Gly-Asp Peptide Inhibits Neointimal Hyperplasia by Recruiting Endothelial Progenitor Cells. J. American College of Cardiology. 2006; 47 (9): 1786-1795.
43. Hench L. L. & Polak J. M. Third-generation biomedical materials. Science. 2002; 295: 1014–1017
44. Narayan R. J. The next generation of biomaterial development. Phil. Trans. R. Soc. A. 2010; 368: 1831– 1837.
45. Griffith L. G. & Naughton G. Tissue engineering:current challenges and expanding opportunities. Science. 2002; 295: 1009–1014.
46. Gittens R. A., McLachlan T., OlivaresNavarrete R., et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell roliferation and differentiation. Biomaterials. 2011; 32: 3395– 3403.
47. Lim J. Y., Shaughnessy M. C., Zhou Z., Noh H., Vogler E. A. & Donahue H. J. Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials. 2008; 29: 1776– 1784.
48. Ikenaga N., Sakudo N., Awazu K., Yasui H., Hasegawa Y. Study on hybrid nanodiamond films formed by plasma chemical vapor deposition (CVD). Vacuum 2006;80:810–3. Chu PK. Enhancement of surface properties of biomaterials using plasmabased technologies. Surf Coat Technol. 2007; 201: 8076–82.
49. Haidopoulos M., Turgeon S., Laroche G., Mantovani D. Chemical and morphological characterization of ultra-thin fluorocarbon plasmapolymer deposition on 316 stainless steel substrates: a first step toward the improvement of the long-term safety of coated-stents. Plasma Process Polym. 2005; 2: 424–40
50. Wang G.X., Shen Y., Zhang H., Quan X.J., Yu Q.S. Influence of surface micro-roughness induced by plasma deposition and chemical erosion plus TiO2 coating on anticoagulation, hydrophilicity, and corrosion resistance of NiTi alloy stents. J Biomed Mater Res A. 2008; 85(4): 1096–102.
51. Wang G.X., Shen Y., Cao Y., Yu Q.S., Guidoin R. Biocompatibility study of plasma coated nitinol (NiTi Alloy) stents. IET Nanobiotechnol. 2007; 1(6): 102–6
52. Chu P. K. Recent applications of plasma-based ion implantation and deposition to microelectronic, nanostructured, and biomedical materials. Surf. Coat. Technol. 2010; 204: 2853 –2863.
53. Tian X. B., Chu P. K., Fu R. & Yang S. Q. Hybrid processes based on plasma immersion ion implantation: a brief review. Surf. Coat. Technol. 2004; 186:190– 19
54. Ziebart T., Schnell A., Walter C. et al. B. Interactions between endothelial progenitor cells (EPC) and titanium implant surfaces. Clin Oral Investig. 2013; 17(1): 301-309,
55. An N., Schedle A., Wieland M., Andrukhov O., Matejka M., Rausch-Fan X. Proliferation, behavior, and cytokine gene expression of human umbilical vascular endothelial cells in response to different titanium surfaces. J Biomed Mater Res. 2010; 93: 364–372.
56. Shen Y., Wang G., Huang X. et al. Surface wettability of plasma SiOx:H nanocoating-induced endothelial cells’ migration and the associated FAK-Rho GTPases signalling pathways. J. R. Soc. Interface. 2012; 9:, 313–327. doi:10.1098/rsif.2011.0278
57. Kirkpatrick C.J., Fuchs S., Iris Hermanns M., Peters K., Unger R.E. Cell culture models of higher complexity in tissue engineering and regenerative medicine. Biomaterials. 2007; 28: 5193–5198.
58. Peters K., Unger R.E., Gatti A.M., Sabbioni E., Tsaryk R., Kirkpatrick C.J. Metallic nanoparticles exhibit paradoxical effects on oxidative stress and pro-inflammatory response in endothelial cells in vitro. Int J Immunopathol Pharmacol. 2007; 20: 685–695
59. Ruygrok P.N., Muller D.W., Serruys P.W. Rapamycin in cardiovascular medicine. Int. Med. J. 2003; 33(3): 103-109. Sehgal S.N. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc. 2003; 35(3 Suppl): 7S-14S
60. Menchaka L., Lam H., Leong I., Li S., Johnson D. Endothelial andsmooth muscle cell growth on titanium nickel thin film. In: Proceedings of international conference on shape memory and superelastic technologies. Germany: Baden–Baden; 2004. p. 381–6
61. Choudhary S., Berhe M., Haberstroh K.M., Webster T.J. Increased endothelial and vascular smooth muscle cell adhesion on nano-structured titanium and CoCrMo. Int J Nanomed. 2006; 1: 41–49.
62. Lu J., Rao M.P., MacDonald N.C, Khang D., Webster TJ. Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. Acta Biomaterialia. 2008; 4: 192–201.
63. Palmaz J.C., Benson A., Eugene A.. Influence of surface topography on endothelialization of intravascular metallic material. J Vasc Interv Radiol. 1999; 10(4): 439–44
64. Bailey S.R., Fuss C., Palmaz J.C., Sprague E.A. Surface micro grooves (MG) improve endothelialization rate in vitro and in vivo. J Am Coll Cardiol. 2001; 37: 70A
65. Sprague E. A., F. Tio, Ahmed S. H., Granada J.F. and Bailey S.R.. Impact of Parallel Micro-Engineered Stent Grooves on Endothelial Cell Migration, Proliferation, and Function. An In Vivo Correlation Study of the Healing Response in the Coronary Swine Model. Circ Cardiovasc Interv. 2012; 5: 499-507
66. Harry D Samaroo, Jing Lu., and Thomas J. Webster. Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness. Int J Nanomedicine. 2008; 3(1): 75–82.
67. Choudhary S., Berhe M., Haberstroh K.M., Webster T.J. Increased endothelial and vascular smooth muscle cell adhesion on nano-structured titanium and CoCrMo. Int J Nanomed. 2006; 1: 41–49.
68. Choudhary S., Haberstroh K.M., Webster T.J. Enhanced functions of vascular cells on nanostructured Ti for improved stent applications. Tissue Eng. 2007; 13: 1421–1430.
69. Khang D., Lu J., Yao C., Haberstroh K.M., Webster T.J. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials. 2008; 29: 970–983.
70. Peng L., Eltgroth M.L., LaTempa T.J., Grimes C.A., Desai T.A.. The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. Biomaterials. 2009; 30: 1268–1272.
71. Shen Y., Wang G., Chen L., Li H. et al. Investigation of surface endothelialization on biomedical nitinol (NiTi) alloy: Effects of surface micropatterning combined with plasma nanocoatings. Acta Biomaterialia. 2009; 5; 3593–3604.