1. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure — abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med. 2004;350:1953-9. doi:10.1056/NEJMoa032566.
2. Ohanyan V, Sisakian H, Peketi P, et al. A chicken and egg conundrum: coronary microvascular dysfunction and heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2018;314(6):H1262-3. doi:10.1152/ajpheart.00154.2018.
3. Zile MR, Baicu CF, Ikonomidis J, et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation. 2015;131(14):1247-59. doi:10.1161/CIRCULATIONAHA.114.013215.
4. López B, Querejeta R, González A, et al. Effects of loop diuretics on myocardial fibrosis and collagen type I turnover in chronic heart failure. J Am Coll Cardiol. 2004;43(11):2028-35. doi:10.1016/j.jacc.2003.12.052.
5. Krum H, Elsik M, Schneider HG, et al. Relation of peripheral collagen markers to death and hospitalization in patients with heart failure and preserved ejection fraction: results of the I-PRESERVE collagen substudy. Circ Heart Fail. 2011;4(5):561-8. doi:10.1161/CIRCHEARTFAILURE.110.960716.
6. Zannad F, Alla F, Dousset B, et al. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Circulation. 2000;102(22):2700-6. doi:10.1161/01.cir.102.22.2700.
7. Cui X, Ye L, Li J, et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep. 2018;8(1):635. doi:10.1038/s41598-017-18756-2.
8. Kamo T, Akazawa H, Suda W, et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One. 2017;12:e0174099. doi:10.1371/journal.pone.0174099.
9. Luedde M, Winkler T, Heinsen FA, et al. Heart failure is associated with depletion of core intestinal microbiota. Version 2. ESC Heart Fail. 2017;4(3):282-90. doi:10.1002/ehf2.12155.
10. Kamo T, Akazawa H, Suzuki JI, et al. Novel Concept of a HeartGut Axis in the Pathophysiology of Heart Failure. Korean Circ J. 2017;47(5):663-9. doi:10.4070/kcj.2017.0028.
11. Guyatt GH, Sullivan MJ, Thompson PJ, et al. The 6-minute walk: a new measure of exercise capacity in patients with chronic heart failure. Can Med Assoc J. 1985;132(8):919-23.
12. Беленков Ю. Н., Мареев В. Ю. Принципы рационального лечения хронической сердечной недостаточности. М.: Медиа Медика. 2000. 266 с.
13. Krebs-Smith SM, Pannucci TE, Subar AF, et al. Update of the Healthy Eating Index: HEI-2015. J Acad Nutr Diet. 2018;118(9):1591-602. doi:10.1016/j.jand.2018.05.021.
14. Fu Y, Xiao H, Zhang Y. Beta-adrenoceptor signaling pathways mediate cardiac pathological remodeling. Front Biosci (Elite Ed). 2012;4:1625-37. doi:10.2741/484.
15. Kelly CJ, Zheng L, Campbell EL, et al. Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host Microbe. 2015;17(5):662-71. doi:10.1016/j.chom.2015.03.005.
16. Li J, Zhao F, Wang Y, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14. doi:10.1186/s40168-016-0222-x.
17. Anand S, Kaur H, Mande SS. Comparative In silico Analysis of Butyrate Production Pathways in Gut Commensals and Pathogens. Front Microbiol. 2016;7:1945. doi:10.3389/fmicb.2016.01945.
18. Forbes JD, Chen CY, Knox NC, et al. A comparative study of the gut microbiota in immune-mediated inflammatory diseasesdoes a common dysbiosis exist? Microbiome. 2018;6(1):221. doi:10.1186/s40168-018-0603-4.
19. Bui TP, Shetty SA, Lagkouvardos I, et al. Comparative genomics and physiology of the butyrate-producing bacterium Intestinimonas butyriciproducens. Environ Microbiol Rep. 2016;8(6):1024-37. doi:10.1111/1758-2229.12483.
20. Du G, Dong W, Yang Q, et al. Altered Gut Microbiota Related to Inflammatory Responses in Patients With Huntington’s Disease. Front Immunol. 2021;11:603594. doi:10.3389/fimmu.2020.603594.
21. Gutiérrez-Calabrés E, Ortega-Hernández A, Modrego J, et al. Gut Microbiota Profile Identifies Transition From Compensated Cardiac Hypertrophy to Heart Failure in Hypertensive Rats. Hypertension. 2020;76(5):1545-54. doi:10.1161/HYPERTENSIONAHA.120.15123.
22. Asanuma H, Minamino T, Ogai A, et al. Blockade of histamine H2 receptors protects the heart against ischemia and reperfusion injury in dogs. J Mol Cell Cardiol. 2006;40(5):666-74. doi: 10.1016/j.yjmcc.2006.02.001.
23. Leary PJ, Tedford RJ, Bluemke DA, et al. Histamine H2 Receptor Antagonists, Left Ventricular Morphology, and Heart Failure Risk: The MESA Study. J Am Coll Cardiol. 2016;67(13):1544-52. doi:10.1016/j.jacc.2016.01.045.
24. Thomas CM, Hong T, van Pijkeren JP, et al. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One. 2012;7(2):e31951. doi:10.1371/journal.pone.0031951.
25. Geng S, Yang L, Cheng F, et al. Gut Microbiota Are Associated With Psychological Stress-Induced Defections in Intestinal and Blood-Brain Barriers. Front Microbiol. 2020;10:3067. doi:10.3389/fmicb.2019.03067.
26. Каштанова Д. А., Ткачева О. Н., Попенко А. С. и др. Состав микробиоты кишечника и его взаимосвязь с факторами риска сердечно-сосудистых заболеваний среди относительно здоровых жителей Москвы и Московской области. Кардиоваскулярная терапия и профилактика. 2017;16(3):56-61. doi:10.15829/1728-8800-2017-3-56-61.
27. Tuovinen E, Keto J, Nikkilä J, et al. Cytokine response of human mononuclear cells induced by intestinal Clostridium species. Anaerobe. 2013;19:70-6. doi:10.1016/j.anaerobe.2012.11.002.
28. Konikoff T, Gophna U. Oscillospira: a Central, Enigmatic Component of the Human Gut Microbiota. Trends Microbiol. 2016;24(7):523-4. doi:10.1016/j.tim.2016.02.015.
29. Ogawa Y, Sato M, Yamashita T, et al. Polymicrobial Anaerobic Bacteremia Caused by Butyricimonas virosa and Brachyspira pilosicoli in a Patient with Peritonitis following Intestinal Perforation. Ann Lab Med. 2018;38(1):71-3. doi:10.3343/alm.2018.38.1.71.
30. Tagini F, Greub G. Bacterial genome sequencing in clinical microbiology: a pathogen-oriented review. Eur J Clin Microbiol Infect Dis. 2017;36(11):2007-20. doi:10.1007/s10096-017-3024-6.
31. Farmer JJ, Farmer MK, Holmes B. The Enterobacteriaceae: General Characteristics. Topley & Wilson’s Microbiology and Microbial Infections. 2010;2:1317-59. doi:10.1002/9780470688618.taw0051.
32. Goldstein EJ, Citron DM, Peraino VA, Cross SA. Desulfovibrio desulfuricans bacteremia and review of human Desulfovibrio infections. J Clin Microbiol. 2003;41(6):2752-4. doi:10.1128/JCM.41.6.2752-2754.2003.
33. Zhang-Sun W, Augusto LA, Zhao L, Caroff M. Desulfovibrio desulfuricans isolates from the gut of a single individual: structural and biological lipid A characterization. FEBS Lett. 2015;589(1):165-71. doi:10.1016/j.febslet.2014.11.042.
34. Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013;496(7444):238-42. doi:10.1038/nature11986.
35. Mottawea W, Chiang CK, Mühlbauer M, et al. Altered intestinal microbiota-host mitochondria crosstalk in new onset Crohn’s disease. Nat Commun. 2016;7:13419. doi:10.1038/ncomms13419.
36. Scanlan PD, Shanahan F, Marchesi JR. Culture-independent analysis of desulfovibrios in the human distal colon of healthy, colorectal cancer and polypectomized individuals. FEMS Microbiol Ecol. 2009;69(2):213-21. doi:10.1111/j.1574-6941.2009.00709.x.
37. Zuo K, Li J, Li K, et al. Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation. Gigascience. 2019;8(6):giz058. doi:10.1093/gigascience/giz058.
38. Zhao G, Zhou L, Dong Y, Cheng Y, Song Y. The gut microbiome of hooded cranes (Grus monacha) wintering at Shengjin Lake, China. Microbiologyopen. 2017;6(3):e00447. doi:10.1002/mbo3.447.
39. McCormack UM, Curião T, Buzoianu SG, et al. Exploring a Possible Link between the Intestinal Microbiota and Feed Efficiency in Pigs. Appl Environ Microbiol. 2017;83(15):e00380-17. doi:10.1128/AEM.00380-17.
40. Tanabe S, Grenier D. Characterization of volatile sulfur compound production by Solobacterium moorei. Arch Oral Biol. 2012c;57(12):1639-43. doi:10.1016/j.archoralbio.2012.09.011.
41. Caslin B, Maguire C, Karmakar A, et al. Alcohol shifts gut microbial networks and ameliorates a murine model of neuroinflammation in a sex-specific pattern. Proc Natl Acad Sci USA. 2019;116(51):25808-15. doi:10.1073/pnas.1912359116.
42. Bernstein CN, Forbes JD. Gut Microbiome in Inflammatory Bowel Disease and Other Chronic Immune-Mediated Inflammatory Diseases. Inflamm Intest Dis. 2017;2(2):116-23.doi:10.1159/000481401.