Статья
Роль оксида азота в формировании эндотелиальной дисфункции при сахарном диабете
Представлены современные данные о механизмах, ведущих к нарушению функциональной активности эндотелия сосудистой стенки и развитию макро- и микроангиопатий у больных сахарным диабетом (СД). Приведены сведения об участии в этих процессах оксида азота (NO), обсуждаются вопросы о его вкладе в патогенез сосудистых осложнений СД, с одной стороны, и о влиянии метаболических нарушений, сопряженных с СД, на биодоступность NO, с другой.
1. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005; 54: 1615-25.
2. Fadini GP, de Kreutzenberg SV, Tiengo A, Avogaro A. Why to screen heart disease in diabetes. Atherosclerosis 2009; 204: 11-5.
3. Sundstrom J, Riserus U, Byberg L, et al. Clinical value of the metabolic syndrome for long-term prediction of total and cardiovascular mortality: prospective, population-based cohort study. Br Med J 2006; 332: 878-82.
4. Soedamah-Muthu SS, Fuller JH, Mulnier HE, et al. High risk of cardiovascular disease in patients with type 1 diabetes in the UK: a cohort study using the general practice research database. Diabetes Care 2006; 29: 798-804.
5. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001; 285: 2486-97.
6. Shabab A. Why does diabetes mellitus increase the risk of cardiovascular disease? Acta Med Indones 2006; 38: 33-41.
7. Бувальцев ВИ. Дисфункция эндотелия как новая концепция профилактики и лечения ИБС. ММЖ 2001; 3: 202-8.
8. Lusher TF, Barton M. Biology of the endothelium. Clin Cardiol 1997; 10 (Suppl 11): II3-10.
9. De Vriese AS, Verbeuren TJ, Van de Voorde J, et al. Endothelial dysfunction in diabetes. Dr J Pharmacol 2000; 130: 963-74.
10. Метельская В.А., Гуманова Н.Г. Оксид азота: роль в регуляции биологических функций, методы определения в крови человека. Лаб мед 2005; 7: 19-24.
11. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43: 109-42.
12. Murad F. Discovery of some of the biological effects of nitric oxide and its role in cell signaling. Biosci Rep 1999; 19: 133-54.
13. Forstermann U, Schmidt HHW, Pollock JS, et al. Isoforms of nitric oxide synthase: characterization and purification from different cell types. Biochem Pharmacol 1991; 42: 1849-57.
14. Forstermann U, Boissle J-P, Kleinert Н. Expressional control of the “constitutive” isoforms of nitric oxide synthase (NOS I and NOS III). FASEB J 1998; 12: 773-90.
15. Fleming L, Busse R. NO: the primary EDRF. J Моl Сеll Cardiol 1999; 31: 5-14.
16. Madar Z, Kalet-Litman S, Stark AH. Inducible nitric oxide synthase activity and expression in liver and hepatocytes of diabetic rats. Pharmacology 2005; 73: 106-12.
17. Ванин АФ. Оксид азота в биомедицинских исследованиях. Вестник РАМН 2000; 24: 3-10.
18. Davis КL, Martin Е, Turko IV, Murad F. Nove1 effects of nitric oxide. Annu Rev Pharmaco1 Toxicol 2001; 41: 203-36.
19. Hess DT, Matsumoto A, Kim SO, et al. Protein S-nitrosylation: it has to be so complicated? Trends Biochem Sci 2001; 26: 519-21.
20. Creager MA, Luscher TF, Cosentino F, Beckman JA: Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 2003; 108: 1527-32.
21. Boger RH, Bode-Boger SM. The clinical pharmacology of L-arginine. Annu Rev Pharmacol Toxicol 2001; 41: 79-99.
22. Berkowitz DE, White R, Li D, et al. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation 2003; 108: 2000-6.
23. Jay MT, Chirico S, Siow RC, et al. Modulation of vascular tone by low density lipoproteins: effects on L-arginine transport and nitric oxide synthesis. Exp Physiol 1997. 82: 349-60.
24. Toutouzas K, Riga M, Stefanidi E, et al. Asymmetric dimethylarginine (ADMA) and other endogenous nitric oxide synthase inhibitors as an important cause of vascular insulin resistance. Horm Metab Res 2008; 40: 655-9.
25. Abbasi F, Asagmi T, Cooke JP, et al. Plasma concentrations of asymmetric dimethylarginine are increased in patients with type 2 diabetes mellitus. Am J Cardiol 2001; 88: 201-3.
26. Lin KY, Ito A, Asagami T, et al. Impaired nitric oxide synthase pathway in diabetes mellitus: Role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation 2002; 106: 987-92.
27. Wolin MS, Gupte SA, Oeckler RA. Superoxide in the vascular system. J Vasc Res 2002; 39: 191-207.
28. Zhang Q, Malik P, Pandey D, et al. Paradoxical activation of endothelial nitric oxide synthase by NADPH oxidase. Arterioscler Thromb Vasc Biol 2008; 28: 1627-33.
29. Зенков Н.К., Ланкин В.З., Меньщикова Е.Б. Окислительный стресс. Маик: Наука, Интерпериодика 2001; 344 с.
30. Marletta MA. Nitric oxide synthase: aspects concerning structure and catalysis. Cell 1994; 78: 927-30.
31. Vasquez-Vivar J, Kalyanaraman B, Martasek P. The role of tetrahydrobiopterin in superoxide generation from eNOS: enzymology and physiological implications. Free Radic Res 2003; 37: 121-7.
32. Nakayama Т, Soma J, Takahashy J, et аl. Association analysis of СА repeat polymorphism of the endothelial nitric oxide synthase gene to essential hypertension in Japanese. Clin Genet 1997; 51: 26-30.
33. Taddei S, Virdis А, Matter Р, et аl. Defective L-arginine-nitric oxide pathway in offspring of essentia1 hypertensive patients. Circulation 1996; 94: 1296-303.
34. Аметов А.С., Демидова Т.Ю., Косых С.А. Синтез оксида азота в эндотелии сосудов у больных СД 2-го типа. Клин мед 2005; 28: 62-8.
35. Ganagisawa М, Kurihara Н, Kimura S, et al. А novel potent vasoconstrictor peptide produced bу vascular endothelial cells. Nature 1988; 332: 411-5.
36. Walker GD, Vilerti GC. Textbook of Diabetes. CE Modensen, E Stande (Eds) 1991; 3: 263-81.
37. Triggle CR, Ding H. A review of endothelial dysfunction in diabetes: a focus on the contribution of a dysfunctional eNOS. J Am Soc Hypertens 2010; 4: 102-15.
38. Nishio Y. Endothelial dysfunction in diabetes. Nippon Rinsho 2010; 68: 823-6.
39. West IC: Radicals and oxidative stress in diabetes. Diabet Med 2000; 17: 171-80.
40. Rask-Madsen C, King GL. Proatherosclerotic mechanisms involving protein kinase C in diabetes and insulin resistance. Arterioscler Thromb Vasc Biol 2005; 25: 487-96.
41. Vicent D, Ilany J, Kondo T, et al: The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Invest 2003; 111: 1373-80.
42. Davis BJ, Xie Z, Viollet B, et al. Activation of the AMP-activated rinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes 2006; 55: 496-505.
43. Farkas K, Sarman B, Jermendy G, Somogyi A. Endothelial nitric oxide in diabetes mellitus: too much or not enough? Diabetes Nutr Metab 2000; 13: 287-97.
44. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: Sparking the development of diabetic vascular injury. Circulation 2006; 114: 597-605.
45. Epstein М. Diabetes and hypertension: the bad companions. J Hypertens. 1997; 15 (Suppl 12): 55-62.
46. Vinic AI, Park TS, Stansberry КВ, Pittenger GL. Diabetic neuropathies. Diabetologia 2000; 43: 957-73.
47. Endemann DH, Schiffrin EL. Nitric oxide, oxidative excess, and vascular complications of diabetes mellitus. Curr Hypertens Rep 2004; 6: 85-9.
48. Bitar MS, Wahid S, Mustafa S, et al. Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes. Eur J Pharmacol 2005; 511: 53-64.
49. Hadi HA, Suwaidi JA. Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag 2007; 3: 853-76.