Статья
МикроРНК как биомаркеры сердечно-сосудистых заболеваний
В настоящее время нет сомнений в том, что важную роль в развитии и патогенезе сердечно-сосудистых заболеваний (ССЗ) играют микроРНК. Обнаружение существенных изменений уровня экспрессии данных молекул при различных заболеваниях позволяет рассматривать их в качестве потенциальных биомаркеров заболеваний человека, в том числе сердечной недостаточности. Изучение механизмов взаимосвязи между ССЗ и уровнем экспрессии различных микроРНК, а также установление их точных взаимосвязей с генами является актуальной проблемой и требует дальнейших исследований.
1. Mishra P. J., Bertino J. R. MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics 2009; 10 (3): 399-416. DOI: 10.2217/14622416.10.3.399
2. Kukreja R. C., Yin C., Salloum F. N. MicroRNAs: New Players in Cardiac Injury and Protection. Mol Pharmacol 2011; 80 (4): 558-564. DOI: 10.1124/mol.111.073528
3. Meola N., Gennarino V. A., Banfi S. MicroRNAs and genetic diseases. PathoGenetics 2009; 2 (1): 7. DOI: 10.1186/1755-8417-2-7
4. Zhao Y., Ransom J. F., Li A. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 2007; 129 (2): 303-317. DOI: 10.1016/j.cell.2007.03.030
5. Cakmak H., Coskunpinar E., Ikitimur B. et al. The prognostic value of circulating microRNAs in heart failure: preliminary results from a genome-wide expression study. J Cardiovasc Med (Hagerstown) 2015; 16: 431-437 DOI: 10.2459/JCM.0000000000000233
6. Sucharov C., Bristow M. R., Port J. D. miRNA expression in the failing human heart: functional correlates. J Mol Cell Cardiol 2008; 45 (2): 185-192. DOI: 10.1016/j.yjmcc.2008.04.014
7. van Rooij E., Sutherland L. B., Liu N. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 2006; 103 (48): 18255-18260. DOI: 10.1073/pnas.0608791103
8. Dirkx E., Gladka M. M., Philippen L. E. et al. Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nat Cell Biol 2013; 15 (11): 1282-1293. DOI: 10.1038/ncb2866.
9. Wahlquist C., Jeong D., Rojas-Munoz A. et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 2014; 508 (7497): 531-535. DOI: 10.1038/nature13073
10. Potus F., Ruffenach G., Dahou A. et al. Downregulation of MicroRNA-126 Contributes to the Failing Right Ventricle in Pulmonary Arterial Hypertension. irculation 2015; 132 (10): 932-943. DOI: 10.1161/CIRCULATIONAHA.115.016382
11. Paulin R., Sutendra G., Gurtu V. et al. A miR-208-Mef2 axis drives the decompensation of right ventricular function in pulmonary hypertension. Circ Res 2015; 116 (1): 56-69. DOI: 10.1161/CIRCRESAHA.115.303910.
12. Akat K. M., Moore-McGriff D., Morozov P. et al. Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers. Proc Natl Acad Sci USA 2014; 111 (30): 11151-11156. DOI: 10.1073/pnas.1401724111
13. Tijsen A.J., Creemers E. E., Moerland P. D. et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res. 2010; 106 (6): 1035-1039. DOI: 10.1161/CIRCRESAHA.110.218297.
14. Goren Y., Kushnir M., Zafrir B. et al. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail 2012; 14 (2): 147-154. DOI: 10.1093/eurjhf/hfr155.
15. Fukushima Y., Nakanishi M., Nonogi H. et al. Assessment of plasma miRNAs in congestive heart failure. Circ J 2011; 75 (2): 336-340.
16. Voellenkle C., van Rooij J., Cappuzzello C. et al. MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. Physiol Genomics 2010; 42 (3): 420-426. DOI: 10.1152/physiolgenomics.00211.2009.
17. Tutarel O., Dangwal S., Bretthauer J. et al. Circulating miR-423-5p fails as a biomarker for systemic ventricular function in adults after atrial repair for transposition of the great arteries. Int J Cardiol 2013; 167 (1): 63-66. DOI: 10.1016/j.ijcard. 2011.11.082
18. Tijsen A.J., Creemers E. E., Moerland P. D. et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res 2010; 106 (6): 1035-1039. doi: 10.1161/CIRCRESAHA.110.218297
19. Corsten M. F., Dennert R., Jochems S. et al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 2010; 3 (6): 499-506. DOI: 10.1161/CIRCGENETICS.110.957415.
20. Adachi T., Nakanishi M., Otsuka Y. et al. Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem 2010; 56 (7): 1183-1185. DOI: 10.1373/clinchem.2010.144121.
21. Kochetov A. G., Lyang O. V., Gimadiev R. R. et al. Expression of circulating microRNA in chronic heart failure in patients with cardiovascular pathologies. Laboratory Services 2016; 1: 26-32. DOI: 10.17116/labs20165126-32
22. Ji R., Cheng Y., Yue J. et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 2007; 100 (11): 1579-1588. DOI: 10.1161/CIRCRESAHA.106.141986
23. Suárez Y., Fernández-Hernando C., Pober J. S., Sessa W. C. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 2007; 100 (8): 1164-1173. DOI: 10.1161/01.RES.0000265065.26744.17
24. Cheng Y., Ji R., Yue J. et al. Micro RNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am J Pathol 2007; 170 (6): 1831-1840. DOI: 10.2353/ajpath.2007.061170
25. Roy S., Khanna S., Hussain S. R. et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 2009; 82 (1): 21-29. DOI: 10.1093/cvr/cvp015.
26. Ye X., Zhang H. M., Qiu Y. et al. Coxsackie virus-induced miR-21 disrupts cardiomyocyte interactions via the downregulation of intercalated disc components. PLoS Pathog 2014; 10(4): e1004070. DOI: 10.1371/journal.ppat.1004070.
27. Zhirov I. V., Kochetov A. G., Zaseeva A. V. et al. MicroRNA in the diagnosis of chronic heart failure: state of the problem and the results of a pilot study. Systemic Hypertension 2016; 13 (1): 39-46.
28. Matkovich S., Van Booven D., Youker K. et al. Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation 2009; 119 (9): 1263-1271. http://dx.doi.org/10.1161 /CIRCULATIONAHA. 108.813576
29. Yaron G., Kushnir M., Zafrir B., Tabak S. Serum levels of microRNAs in patients with heart failure. EurJ Heart Fail 2012; 14: 147-154.
30. Callis T., Pandya K., Seok H. et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Investig 2009; 119 (9): 2772-2786 http://dx.doi.org/10.1172/JCI36154
31. Mercola M., Colas A., Willems E. Induced pluripotent stem cells in cardiovascular drug discovery. Circ Res 2013; 112: 534-548. https://doi.org/10.1161/CIRCRESAHA.111.250266
32. Vogel B., Keller A., Frese K. et al. Multivariate miRNA signatures as biomarkers for non-ischaemic systolic heart failure. Eur Heart J. 2013; 34 (36): 2812-2822 http://dx.doi.org/10.1093/eurheartj/eht256