Статья
Упреждающая противовоспалительная и антикоагулянтная терапия в лечении продвинутых стадий новой коронавирусной инфекции (COVID-19). Разбор клинических случаев и дизайн исследования: колхицин против руксолитиниба и секукинумаба в открытом проспективном рандомизируемом исследовании у пациентов с COVID-19 (КОЛОРИТ)
Статья посвящена вопросу эффективного лечения новой коронавирусной инфекции (COVID-19) на продвинутых стадиях болезни. Рассматриваются типы ответа системы иммунитета на вирусную нагрузку SARS-CoV-2 с запуском процесса воспаления. Подробно анализируется ситуация, при которой нарастающее аутоиммунное воспаление (вплоть до развития «цитокинового шторма») поражает не только легочную паренхиму, но и эндотелий мелких сосудов легких. Одновременное поражение альвеол и микротромбоз сосудов легких сопровождаются прогрессирующим нарушением газообмена, развитием острого респираторного дистресс-синдрома, лечение которого, даже с использованием инвазивной вентиляции легких, малоэффективно и не позволяет реально менять прогноз больных с COVID-19. С целью прерывания патологического процесса на наиболее ранних стадиях болезни обосновывается необходимость упреждающей противовоспалительной терапии в сочетании с активным антикоагуляционным лечением. Разбираются результаты первых рандомизированных исследований по применению ингибиторов провоспалительных цитокинов и хемокинов – интерлейкина-6 (тоцилизумаба), интерлейкина-17 (секукинумаба), блокаторов янус-киназ, через которые передается сигнал на клетки (руксолитиниб), имеющих потенциал в раннем лечении COVID-19. В качестве оригинального пути рассматривается применение известного противовоспалительного препарата для лечения подагры колхицина у больных с COVID-19. Приводится дизайн оригинального сравнительного исследования КОЛОРИТ по применению колхицина, руксолитиниба и секукинумаба в лечении COVID-19. На примере клинических наблюдений из практики работы Университетской клиники МНОЦ МГУ имени М. В. Ломоносова анализируется опыт эффективной ранней противовоспалительной терапии вместе с антикоагулянтами пациентов с COVID-19 и опасности, связанные с отказом от своевременного начала такой терапии.
1. Pericàs JM, Hernandez-Meneses M, Sheahan TP, Quintana E, Ambrosioni J, Sandoval E et al. COVID-19: from epidemiology to treatment. European Heart Journal. 2020;41(22):2092–112. DOI: 10.1093/eurheartj/ehaa462
2. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239. DOI: 10.1001/jama.2020.2648
3. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J et al. Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine. 2020;382(18):1708–20. DOI: 10.1056/NEJMoa2002032
4. Zhang X, Cai H, Hu J, Lian J, Gu J, Zhang S et al. Epidemiological, clinical characteristics of cases of SARS-CoV-2 infection with abnormal imaging findings. International Journal of Infectious Diseases. 2020;94:81–7. DOI: 10.1016/j.ijid.2020.03.040
5. Gao C, Cai Y, Zhang K, Zhou L, Zhang Y, Zhang X et al. Association of hypertension and antihypertensive treatment with COVID-19 mortality: a retrospective observational study. European Heart Journal. 2020;41(22):2058–66. DOI: 10.1093/eurheartj/ehaa433
6. De Spiegeleer A, Bronselaer A, Teo JT, Byttebier G, De Tré G, Belmans L et al. The Effects of ARBs, ACEis, and Statins on Clinical Outcomes of COVID-19 Infection Among Nursing Home Residents. Journal of the American Medical Directors Association. 2020;21(7):909- 914.e2. DOI: 10.1016/j.jamda.2020.06.018
7. Bode B, Garrett V, Messler J, McFarland R, Crowe J, Booth R et al. Glycemic Characteristics and Clinical Outcomes of COVID-19 Patients Hospitalized in the United States. Journal of Diabetes Science and Technology. 2020;14(4):813–21. DOI: 10.1177/1932296820924469
8. Мареев В.Ю., Орлова Я.А., Павликова Е.П., Мацкеплишвили С.Т., Акопян Ж.А., Плисюк А.Г. и др. Возможности комбинированной терапии на раннем этапе течения новой коронавирусной инфекции (COVID-19). Разбор клинических случаев и дизайн исследования: Бромгексин И Спиронолактон для лечения КоронаВирусной Инфекции, Требующей госпитализации (БИСКВИТ). Кардиология. 2020;60(8):4–15. DOI: 10.18087/cardio.2020.8.n1307
9. Muus C, Luecken MD, Eraslan G, Waghray A, Heimberg G, Sikkema L et al. Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells. Bioinformatics. 2020. Av. at: http://biorxiv.org/lookup/doi/10.1101/2020.04.19.049254.
10. Zayratyants O.V., Samsonova M.V., Mikhaleva L.M., Chernyaev A.L., Mishnev O.D., Krupnov N.M. et al. Pathological anatomy of COVID-19: Atlas. -M.: GBU “NIIOZMM DZM”; 2020. - 140p.. ISBN 978-5-907251-57-1
11. Ruan Q, Yang K, Wang W, Jiang L, Song J. Correction to: Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine. 2020;46(6):1294–7. DOI: 10.1007/s00134-020-06028-z
12. Bradley BT, Maioli H, Johnston R, Chaudhry I, Fink SL, Xu H et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. The Lancet. 2020;396(10247):320–32. DOI: 10.1016/S0140-6736(20)31305-2
13. Hansell DM, Bankier AA, MacMahon H, McLoud TC, Müller NL, Remy J. Fleischner Society: Glossary of Terms for Thoracic Imaging. Radiology. 2008;246(3):697–722. DOI: 10.1148/radiol.2462070712
14. Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlößer HA, Schlaak M et al. Cytokine release syndrome. Journal for ImmunoTherapy of Cancer. 2018;6(1):56. DOI: 10.1186/s40425- 018-0343-9
15. Wang J-Y, Chang S-Y, Huang Y-W, Chang S-C. Serology-positive but minimally symptomatic COVID-19 may still cause lung injury and lung function impairment. The International Journal of Tuberculosis and Lung Disease. 2020;24(6):568–9. DOI: 10.5588/ijtld.20.0197
16. Zhang C, Wu Z, Li J-W, Zhao H, Wang G-Q. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. International Journal of Antimicrobial Agents. 2020;55(5):105954. DOI: 10.1016/j.ijantimicag.2020.105954
17. Вернадский Р.Ю., Медведева А.А., Гарбуков Е.Ю., Синилкин И.Г., Брагина О.Д., Зельчан Р.В. и др. Метаболическая визуализация рака молочной железы методом однофотонной эмиссионной компьютерной томографии с 99mTc-1-тио-d-глюкозой. Российский Электронный Журнал Лучевой Диагностики. 2019;9(4):82-96. DOI: 10.21569/2222-7415-2019-9-4-82-96
18. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine. 2020;8(4):420–2. DOI: 10.1016/S2213-2600(20)30076-X
19. Протокол лечения COVID-19 Медицинского центра МГУ. 2020. Доступно на: http://www.mc.msu.ru/protokol-mnoc.pdf
20. The OpenSAFELY Collaborative, Williamson E, Walker AJ, Bhaskaran KJ, Bacon S, Bates C et al. OpenSAFELY: factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. Epidemiology. 2020.DOI: 10.1101/2020.05.06.20092999.
21. Guan W, Liang W, Zhao Y, Liang H, Chen Z, Li Y et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. European Respiratory Journal. 2020;55(5):2000547. DOI: 10.1183/13993003.00547-2020
22. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. Journal of Clinical Investigation. 2020;130(5):2620–9. DOI: 10.1172/JCI137244
23. Tan L, Kang X, Ji X, Li G, Wang Q, Li Y et al. Validation of Predictors of Disease Severity and Outcomes in COVID-19 Patients: A Descriptive and Retrospective Study. Med. 2020; S2666634020300040.. DOI: 10.1016/j.medj.2020.05.002
24. Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. The Lancet Infectious Diseases. 2020;20(4):425– 34. DOI: 10.1016/S1473-3099(20)30086-4
25. Mo X, Jian W, Su Z, Chen M, Peng H, Peng P et al. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. European Respiratory Journal. 2020;55(6):2001217. DOI: 10.1183/13993003.01217-2020
26. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323(20):2052. DOI: 10.1001/jama.2020.6775
27. Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. The Lancet. 2020;395(10239):1763–70. DOI: 10.1016/S0140-6736(20)31189-2
28. Grasselli G, Greco M, Zanella A, Albano G, Antonelli M, Bellani G et al. Risk Factors Associated With Mortality Among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Internal Medicine. 2020;e203539.. DOI: 10.1001/jamainternmed.2020.3539
29. Mangalmurti N, Hunter CA. Cytokine Storms: Understanding COVID-19. Immunity. 2020;53(1):19–25. DOI: 10.1016/j.immuni.2020.06.017
30. Rizzo P, Vieceli Dalla Sega F, Fortini F, Marracino L, Rapezzi C, Ferrari R. COVID-19 in the heart and the lungs: could we “Notch” the inflammatory storm? Basic Research in Cardiology. 2020;115(3):31. DOI: 10.1007/s00395-020-0791-5
31. Mohan V, Tauseen RA. Spontaneous pneumomediastinum in COVID-19. BMJ Case Reports. 2020;13(5):e236519. DOI: 10.1136/bcr2020-236519
32. Zhou C, Gao C, Xie Y, Xu M. COVID-19 with spontaneous pneumomediastinum. The Lancet Infectious Diseases. 2020;20(4):510. DOI: 10.1016/S1473-3099(20)30156-0
33. Colaneri M, Bogliolo L, Valsecchi P, Sacchi P, Zuccaro V, Brandolino F et al. Tocilizumab for Treatment of Severe COVID-19 Patients: Preliminary Results from SMAtteo COvid19 REgistry (SMACORE). Microorganisms. 2020;8(5):695. DOI: 10.3390/microorganisms8050695
34. Tavazzi G, Pellegrini C, Maurelli M, Belliato M, Sciutti F, Bottazzi A et al. Myocardial localization of coronavirus in COVID‐19 cardiogenic shock. European Journal of Heart Failure. 2020;22(5):911–5. DOI: 10.1002/ejhf.1828
35. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host–Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chemical Neuroscience. 2020;11(7):995–8. DOI: 10.1021/acschemneuro.0c00122
36. Wunsch H. Mechanical Ventilation in COVID-19: Interpreting the Current Epidemiology. American Journal of Respiratory and Critical Care Medicine. 2020;202(1):1–4. DOI: 10.1164/rccm.202004-1385ED
37. Liu J, Liu Y, Xiang P, Pu L, Xiong H, Li C et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. Journal of Translational Medicine. 2020;18(1):206. DOI: 10.1186/s12967-020-02374-0
38. Imtiaz F, Shafique K, Mirza S, Ayoob Z, Vart P, Rao S. Neutrophil lymphocyte ratio as a measure of systemic inflammation in prevalent chronic diseases in Asian population. International Archives of Medicine. 2012;5(1):2. DOI: 10.1186/1755-7682-5-2
39. Yang A-P, Liu J, Tao W, Li H. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. International Immunopharmacology. 2020;84: 106504.. DOI: 10.1016/j.intimp.2020.106504
40. Zhang Y, Wu W, Du M, Luo W, Hou W, Shi Y et al. Neutrophil-to-Lymphocyte Ratio may Replace Chest Computed Tomography to Reflect the Degree of Lung Injury in Patients with Corona Virus Disease 2019 (COVID-19). Av. at: https://www.researchsquare.com/article/rs23201/v1. DOI: 10.21203/rs.3.rs-23201/v1.2020.
41. Liu Y, Du X, Chen J, Jin Y, Peng L, Wang HHX et al. Neutrophil-tolymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. Journal of Infection. 2020;81(1):e6–12. DOI: 10.1016/j.jinf.2020.04.002
42. Ullah W, Basyal B, Tariq S, Almas T, Saeed R, Roomi S et al. Lymphocyte-to-C-Reactive Protein Ratio: A Novel Predictor of Adverse Outcomes in COVID-19. Journal of Clinical Medicine Research. 2020;12(7):415–22. DOI: 10.14740/jocmr4227
43. Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Journal of Medical Virology. 2020;. DOI: 10.1002/jmv.25819
44. Министерство Здравоохранения Российской Федерации. Временные методические рекомендации. Медицинская реабилитация при новой коронавирусной инфекции (COVID-19). Версия 2 (31.07.2020). Доступно на: https://стопкоронавирус.рф/ai/doc/461/attach/28052020_Preg_COVID-19_v1.pdf
45. Kewan T, Covut F, Al–Jaghbeer MJ, Rose L, Gopalakrishna KV, Akbik B. Tocilizumab for treatment of patients with severe COVID–19: A retrospective cohort study. EClinicalMedicine. 2020;24: 100418. DOI: 10.1016/j.eclinm.2020.100418
46. Guaraldi G, Meschiari M, Cozzi-Lepri A, Milic J, Tonelli R, Menozzi M et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. The Lancet Rheumatology. 2020;2(8):e474–84. DOI: 10.1016/S2665-9913(20)30173-9
47. Somers EC, Eschenauer GA, Troost JP, Golob JL, Gandhi TN, Wang L et al. Tocilizumab for treatment of mechanically ventilated patients with COVID-19. Clinical Infectious Diseases. 2020; ciaa954.. DOI: 10.1093/cid/ciaa954
48. Antinori S, Bonazzetti C, Gubertini G, Capetti A, Pagani C, Morena V et al. Tocilizumab for cytokine storm syndrome in COVID-19 pneumonia: an increased risk for candidemia? Autoimmunity Reviews. 2020;19(7):102564. DOI: 10.1016/j.autrev.2020.102564
49. Marfella R, Paolisso P, Sardu C, Bergamaschi L, D’Angelo EC, Barbieri M et al. Negative impact of hyperglycaemia on tocilizumab therapy in Covid-19 patients. Diabetes & Metabolism. 2020;S1262363620300823.. DOI: 10.1016/j.diabet.2020.05.005
50. Roche provides an update on the phase III COVACTA trial of Actemra/RoActemra in hospitalised patients with severe COVID-19 associated pneumonia.Available at: https://www.roche.com/investors/updates/inv-update-2020-07-29.htm
51. Parodi E, O’Donnell C. Tocilizumab Fails to Help COVID-19 Patients in Italian Study. The Rheumatologist. 2020;
52. Roche HL. A Study to Evaluate the Efficacy and Safety of Remdesivir Plus Tocilizumab Compared with Remdesivir Plus Placebo in Hospitalized Participants With Severe COVID-19 Pneumonia (REMDACTA). ClinicalTrials.gov Identifier: NCT04409262.Available at: https://clinicaltrials.gov/ct2/show/NCT04409262
53. Hoffmann-La Roche. A Phase-II, Open-Label, Randomized, Multicenter Study to Investigate the Pharmacodynamics, Pharmacokinetics, Safety, and Efficacy of 8 mg/kg or 4mg/kg Intravenous Tocilizumab in Patients with Moderate to Severe COVID-19 Pneumonia (MARIPOSA). ClinicalTrials.gov Identifier: NCT04363736. Av. at: https://clinicaltrials.gov/ct2/show/NCT04363736. 2020 г.
54. Genentech, Inc. A Randomized, Double-Blind, Placebo-Controlled, Multicenter Study to Evaluate the Efficacy and Safety of Tocilizumab in Hospitalized Patients With COVID-19 Pneumonia. ClinicalTrials.gov Identifier: NCT04372186. Av. at: https://clinicaltrials.gov/ct2/show/NCT04372186. 2020 г.
55. Мареев В.Ю., Орлова Я.А., Павликова Е.П., Мацкеплишвили С.Т., Краснова Т.Н., Малахов П.С. и др. Пульс-терапия стероидными гормонами больных с коронавирусной пневмонией (COVID-19), системным воспалением и риском венозных тромбозов и тромбоэмболий (исследование ПУТНИК). Кардиология. 2020;60(6):15-29. DOI: 10.18087/cardio.2020.6.n1226
56. The RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL et al. Dexamethasone in Hospitalized Patients with Covid-19 – Preliminary Report. New England Journal of Medicine. 2020; NEJMoa2021436.. DOI: 10.1056/NEJMoa2021436
57. Ramiro S, Mostard RLM, Magro-Checa C, van Dongen CMP, Dormans T, Buijs J et al. Historically controlled comparison of glucocorticoids with or without tocilizumab versus supportive care only in patients with COVID-19-associated cytokine storm syndrome: results of the CHIC study. Annals of the Rheumatic Diseases. 2020;79(9):1143–51. DOI: 10.1136/annrheumdis-2020-218479
58. Sinha P, Matthay MA, Calfee CS. Is a “Cytokine Storm” Relevant to COVID-19? JAMA Internal Medicine. 2020;. DOI: 10.1001/jamainternmed.2020.3313
59. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497–506. DOI: 10.1016/S0140-6736(20)30183-5
60. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020;395(10229):1054–62. DOI: 10.1016/S0140-6736(20)30566-3
61. Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z et al. D‐dimer levels on admission to predict in‐hospital mortality in patients with Covid‐19. Journal of Thrombosis and Haemostasis. 2020;18(6):1324–9. DOI: 10.1111/jth.14859
62. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. Journal of Thrombosis and Haemostasis. 2020;18(5):1094–9. DOI: 10.1111/jth.14817
63. Wichmann D, Sperhake J-P, Lütgehetmann M, Steurer S, Edler C, Heinemann A et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Annals of Internal Medicine. 2020;173(4):268–77. DOI: 10.7326/M20-2003
64. Paranjpe I, Fuster V, Lala A, Russak AJ, Glicksberg BS, Levin MA et al. Association of Treatment Dose Anticoagulation With In-Hospital Survival Among Hospitalized Patients With COVID-19. Journal of the American College of Cardiology. 2020;76(1):122–4. DOI: 10.1016/j.jacc.2020.05.001
65. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Research. 2020; 191:145–7. DOI: 10.1016/j.thromres.2020.04.013
66. Soylu K, Gedikli Ö, Ekşi A, Avcıoğlu Y, Soylu Aİ, Yüksel S et al. Neutrophil-to-lymphocyte ratio for the assessment of hospital mortality in patients with acute pulmonary embolism. Archives of Medical Science. 2016; 1:95–100. DOI: 10.5114/aoms.2016.57585
67. Price LC, McCabe C, Garfield B, Wort SJ. Thrombosis and COVID-19 pneumonia: the clot thickens! European Respiratory Journal. 2020;56(1):2001608. DOI: 10.1183/13993003.01608-2020
68. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers D, Kant KM et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thrombosis Research. 2020; 191:148–50. DOI: 10.1016/j.thromres.2020.04.041
69. Lodigiani C, Iapichino G, Carenzo L, Cecconi M, Ferrazzi P, Sebastian T et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thrombosis Research. 2020;191:9–14. DOI: 10.1016/j.thromres.2020.04.024
70. Criel M, Falter M, Jaeken J, Van Kerrebroeck M, Lefere I, Meylaerts L и др. Venous thromboembolism in SARS-CoV-2 patients: only a problem in ventilated ICU patients, or is there more to it? European Respiratory Journal. 2020;56(1):2001201. DOI: 10.1183/13993003.01201-2020
71. Middeldorp S, Coppens M, Haaps TF, Foppen M, Vlaar AP, Müller MCA et al. Incidence of venous thromboembolism in hospitalized patients with COVID‐19. Journal of Thrombosis and Haemostasis. 2020;18(8):1995–2002. DOI: 10.1111/jth.14888
72. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. New England Journal of Medicine. 2020;383(2):120–8. DOI: 10.1056/NEJMoa2015432
73. Bryce C, Grimes Z, Pujadas E, Ahuja S, Beasley MB, Albrecht R et al. Pathophysiology of SARS-CoV-2: targeting of endothelial cells renders a complex disease with thrombotic microangiopathy and aberrant immune response. The Mount Sinai COVID-19 autopsy experience. Pathology. 2020. Av. at: https://www.medrxiv.org/content/10.1101/2020.05.18.20099960v1.
74. McGonagle D, O’Donnell JS, Sharif K, Emery P, Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. The Lancet Rheumatology. 2020;2(7):e437–45. DOI: 10.1016/S2665-9913(20)30121-1
75. Dorward DA, Russell CD, Um IH, Elshani M, Armstrong SD, PenriceRandal R et al. Tissue-specific tolerance in fatal Covid-19. Infectious Diseases (except HIV/AIDS). 2020. Av. at: https://www.medrxiv.org/content/10.1101/2020.07.02.20145003v1.
76. Iba T, Levi M, Levy JH. Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation. Seminars in Thrombosis and Hemostasis. 2020;46(01):089–95. DOI: 10.1055/s-0039-1694995
77. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033–40. DOI: 10.1182/blood.2020006000
78. Panigada M, Bottino N, Tagliabue P, Grasselli G, Novembrino C, Chantarangkul V et al. Hypercoagulability of COVID‐19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. Journal of Thrombosis and Haemostasis. 2020;18(7):1738–42. DOI: 10.1111/jth.14850
79. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis. 2020;18(4):844–7. DOI: 10.1111/jth.14768
80. Oudkerk M, Büller HR, Kuijpers D, van Es N, Oudkerk SF, McLoud TC et al. Diagnosis, Prevention, and Treatment of Thromboembolic Complications in COVID-19: Report of the National Institute for Public Health of the Netherlands. Radiology. 2020;201629.. DOI: 10.1148/radiol.2020201629
81. Llitjos J, Leclerc M, Chochois C, Monsallier J, Ramakers M, Auvray M et al. High incidence of venous thromboembolic events in anticoagulated severe COVID‐19 patients. Journal of Thrombosis and Haemostasis. 2020;18(7):1743–6. DOI: 10.1111/jth.14869
82. Gavioli EM, Sikorska G, Man A, Rana J, Vider E. Current Perspectives of Anticoagulation in Patients with COVID-19. Journal of Cardiovascular Pharmacology. 2020;76(2):146–50. DOI: 10.1097/ FJC.0000000000000861
83. Wise J. Covid-19 and thrombosis: what do we know about the risks and treatment? BMJ. 2020;369:m2058. DOI: 10.1136/bmj.m2058
84. Wang T, Chen R, Liu C, Liang W, Guan W, Tang R et al. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19. The Lancet Haematology. 2020;7(5): e362–3. DOI: 10.1016/S2352-3026(20)30109-5
85. Spyropoulos AC, Ageno W, Barnathan ES. Hospital-based use of thromboprophylaxis in patients with COVID-19. The Lancet. 2020;395(10234):e75. DOI: 10.1016/S0140-6736(20)30926-0
86. Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up. Journal of the American College of Cardiology. 2020;75(23):2950–73. DOI: 10.1016/j.jacc.2020.04.031
87. Berghe TV, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nature Reviews Molecular Cell Biology. 2014;15(2):135–47. DOI: 10.1038/nrm3737
88. Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunological Reviews. 2015;265(1):130–42. DOI: 10.1111/imr.12287
89. Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nature Immunology. 2009;10(3):241–7. DOI: 10.1038/ni.1703
90. Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL, Borca MV. The Role of Interleukin 6 During Viral Infections. Frontiers in Microbiology. 2019;10:1057. DOI: 10.3389/fmicb.2019.01057
91. Han H, Ma Q, Li C, Liu R, Zhao L, Wang W et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerging Microbes & Infections. 2020;9(1):1123–30. DOI: 10.1080/22221751.2020.1770129
92. Bulat V, Situm M, Azdajic MD, Likic R. Potential role of IL‐17 blocking agents in the treatment of severe COVID‐19? British Journal of Clinical Pharmacology. 2020; bcp.14437.. DOI: 10.1111/bcp.14437
93. Feldmann M, Maini RN, Woody JN, Holgate ST, Winter G, Rowland M et al. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. The Lancet. 2020;395(10234):1407–9. DOI: 10.1016/S0140-6736(20)30858-8
94. Ucciferri C, Auricchio A, Di Nicola M, Potere N, Abbate A, Cipollone F et al. Canakinumab in a subgroup of patients with COVID-19. The Lancet Rheumatology. 2020;2(8):e457-ee458. DOI: 10.1016/S2665-9913(20)30167-3
95. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. New England Journal of Medicine. 2017;377(12):1119–31. DOI: 10.1056/NEJMoa1707914
96. Министерство здравоохранения РФ. Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». Версия 4 (27.03.2020). Москва. Доступно на: https://static-3.rosminzdrav.ru/system/attachments/attaches/000/049/877/original/COVID19_recomend_v4.pdf
97. Cao Y, Wei J, Zou L, Jiang T, Wang G, Chen L et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. Journal of Allergy and Clinical Immunology. 2020;146(1):137-146.e3. DOI: 10.1016/j.jaci.2020.05.019
98. Beringer A, Miossec P. Systemic effects of IL-17 in inflammatory arthritis. Nature Reviews Rheumatology. 2019;15(8):491–501. DOI: 10.1038/s41584-019-0243-5
99. Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nature Reviews Drug Discovery. 2012;11(10):763–76. DOI: 10.1038/nrd3794
100. Schett G, Sticherling M, Neurath MF. COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Nature Reviews Immunology. 2020;20(5):271–2. DOI: 10.1038/s41577-020-0312-7
101. Carugno A, Gambini DM, Raponi F, Vezzoli P, Locatelli AGC, Di Mercurio M et al. COVID-19 and biologics for psoriasis: A high-epidemic area experience – Bergamo, Lombardy, Italy. Journal of the American Academy of Dermatology. 2020;83(1):292–4. DOI: 10.1016/j.jaad.2020.04.165
102. Di Lernia V, Bombonato C, Motolese A. COVID‐19 in an elderly patient treated with secukinumab. Dermatologic Therapy. 2020;e13580.. DOI: 10.1111/dth.13580
103. Dagenais M, Skeldon A, Saleh M. The inflammasome: in memory of Dr. Jurg Tschopp. Cell Death & Differentiation. 2012;19(1):5–12. DOI: 10.1038/cdd.2011.159
104. Jamilloux Y, Henry T, Belot A, Viel S, Fauter M, El Jammal T et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmunity Reviews. 2020;19(7):102567. DOI: 10.1016/j.autrev.2020.102567
105. Clancy CJ, Nguyen MH. Coronavirus Disease 2019, Superinfections, and Antimicrobial Development: What Can We Expect? Clinical Infectious Diseases. 2020; ciaa524.. DOI: 10.1093/cid/ciaa524
106. FitzGerald JD, Dalbeth N, Mikuls T, Brignardello‐Petersen R, Guyatt G, Abeles AM et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Care & Research. 2020;72(6):744–60. DOI: 10.1002/acr.24180
107. Tardif J-C, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. New England Journal of Medicine. 2019;381(26):2497–505. DOI: 10.1056/NEJMoa1912388
108. Martínez GJ, Celermajer DS, Patel S. The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis. 2018; 269:262–71. DOI: 10.1016/j.atherosclerosis.2017.12.027
109. Lu Y, Chen J, Xiao M, Li W, Miller DD. An Overview of Tubulin Inhibitors That Interact with the Colchicine Binding Site. Pharmaceutical Research. 2012;29(11):2943–71. DOI: 10.1007/s11095-012-0828-z
110. Deftereos SG, Giannopoulos G, Vrachatis DA, Siasos GD, Giotaki SG, Gargalianos P et al. Effect of Colchicine vs Standard Care on Cardiac and Inflammatory Biomarkers and Clinical Outcomes in Patients Hospitalized with Coronavirus Disease 2019: The GRECCO-19 Randomized Clinical Trial. JAMA Network Open. 2020;3(6): e2013136. DOI: 10.1001/jamanetworkopen.2020.13136
111. Montreal Heart Institute. Colchicine Coronavirus SARS-CoV2 Trial (COLCORONA) (COVID-19). ClinicalTrials.gov Identifier: NCT04322682.Available at: https://clinicaltrials.gov/ct2/show/NCT04322682
112. Population Health Research Institute. The ECLA PHRI COLCOVID Trial. Effects of Colchicine on Moderate/High-risk Hospitalized COVID-19 Patients. (COLCOVID). ClinicalTrials.gov Identifier: NCT04328480.Available at: https://clinicaltrials.gov/ ct2/show/NCT04328480
113. Lomonosov Moscow State University Medical Research and Educational Center. COLchicine Versus Ruxolitinib and Secukinumab In Open Prospective Randomized Trial (COLORIT). ClinicalTrials. gov Identifier: NCT04403243. Av. at: https://clinicaltrials.gov/ct2/show/NCT04403243. 2020 г.
114. Carfì A, Bernabei R, Landi F, for the Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020;324(6):603–5. DOI: 10.1001/jama.2020.12603