1. Neves M, Virdis A, Oigman W. Target organ damage in hypertension. Int J Hypertens. 2012;2012:454508. doi:10.1155/2012/454508
2. Ikram MK, Ong YT, Cheung CY, Wong TY. Retinal vascular caliber measurements: clinical significance, current knowledge and future perspectives. Ophthalmologica. 2013;229(3):125—136. doi:10.1159/000342158
3. Wong TY, Islam FM, Klein R, Klein BE, Cotch MF, Castro C et al. Retinal vascular caliber, cardiovascular risk factors, and inflammation: the multi-ethnic study of atherosclerosis (MESA). Invest Ophthalmol Vis Sci. 2006;47(6):2341-2350.
4. Grassi G, Heagerty A, Kjeldsen S, Laurent S, Ruilope N, Rynkiewicz A et al. Guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25(6):1105-1187.
5. Breslin D, Gifford J, Fairbairn JF, Kearns TP. Prognostic importance of ophthalmoscopic findings in essential hypertension. J Am Med Assoc. 1966;195(5):335-338.
6. Van den Born B, Hulsman C, Hoekstra J, Schlingemann R, van Montfrans G. Value of routine fundoscopy in patients with hypertension: systematic review. Br Med J. 2005;9(331):73.
7. Барсуков А. В., Корнейчук Н. Н., Песикин И. Н., Гор-диенко А. В., Хубулава Г. Г. Норадреналин-секретирующая параганглиома: описание клинического случая. Артериальная гипертензия. 2017;23(3):231-242. doi:10.18705/1607419X-2017-23-3-231-242.
8. Samara WA, Shahlaee A, Adam MK, Khan MA, Chiang A, Maguire JI et al. Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity. Ophthalmology. 2017;124(2):235-244. doi:10.1016/j.ophtha.2016.10.008
9. Iafe NA, Phasukkijwatana N, Chen X, Sarraf D. Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(13):5780-5787. doi:10.1167/iovs.16-20045
10. Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009;148(3):445450. doi:10.1016/j.ajo.2009.04.029
11. Donati S, Maresca AM, Cattaneo J, Grossi A, Mazzola M, Caprani SM et al. Optical coherence tomography angiography and arterial hypertension: a role in identifying subclinical microvascular damage? Eur J Ophthalmol. 2019:1120672119880390. doi:10.1177/1120672119880390
12. Burnasheva MA, Maltsev DS, Kulikov AN, Sherbakova KA, Barsukov AV. Association of chronic paracentral acute middle maculopathy lesions with hypertension. Ophthalmol Retina. 2019: S 2468-6530(19)30665-7. doi:10.1016/j.oret.2019.12.001
13. Чазова И. Е., Жернакова Ю. В.. Клинические рекомендации. Диагностика и лечение артериальной гипертонии. Системные гипертензии. 2019;16(1):6-31. doi:10.26442/2075082X.2019.1.190179.
14. Agabiti E, France MA, Uk AD, Germany FM, Kerins M, Germany RK et al. ESC/ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension. Eur Heart J. 2018;39(33):30213104. doi:10.1097/HJH.0000000000001940
15. Heitmar R, Kalitzeos A, Panesar V Comparison of two formulas used to calculate summarized retinal vessel calibers. Optom Vis Sci. 2015;92(11):1085-1091. doi:10.1097/OPX.0000000000000704
16. Kraus MF, Potsaid B, Mayer MA, Bock R, Baumann B, Liu JJ et al. Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns. Biomed Opt Express. 2012;3(6):1182-1199. doi:10.1364/BOE.3.001182
17. Bhanushali D, Anegondi N, Gadde S, Srinivasan P, Chidambara L, Yadav N et al. Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):519-525.
18. Shahlaee A, Samara WA, Hsu J, Say EA, Khan MA, Sridhar J et al. In vivo assessment of macular vascular density in healthy human eyes using optical coherence tomography angiography. Am J Ophthalmol. 2016;165:39-46. doi:10.1016/j.ajo.2016.02.018
19. Liew G, Sharrett AR, Wang JJ, Klein R, Klein BE, Mitchell P et al. Relative importance of systemic determinants of retinal arteriolar and venular caliber: the atherosclerosis risk in communities study. Arch Ophthalmol. 2008;126(10):1404-1410. doi:10.1001/archopht.126.10.1404
20. von Hanno T, Вertelsen G, Sj0lie A, Mathiesen EB. Retinal vascular calibres are significantly associated with cardiovascular risk factors: the Troms0 Eye Study. Acta Ophthalmol. 2014;92(1):40-46. doi:10.1111/aos.12102
21. Sun C, Wang JJ, Mackey DA, Wong TY. Retinal vascular caliber: systemic, environmental, and genetic associations. Surv Ophthalmol. 2009;54(1):74-95.
22. Levy BI, Schiffrin EL, Mourad JJ, Agostini D, Vicaut E, Safar ME et al. Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation. 2008;118(9):968-976. doi:10.1161/CIRCULATIONAHA.107.763730
23. Ding J, Waic KL, McGeechan K, Ikram MK, Kawasaki R, Xie J et al. Retinal vascular caliber and the development of hypertension: a meta-analysis of individual participant data. J Hypertens. 2014;32(2):207-215. doi:10.1097/HJH.0b013e32836586f4
24. Cuspidi C, Negri F, Giudici V, Sala C. Retinal changes and cardiac remodelling in systemic hypertension. Ther Adv Cardiovasc Dis. 2009;3(3):205-214. doi:10.1177/1753944709103220
25. Varghese M,Adhyapak SM, Thomas T, Sunder M, Varghese K. The association of severity of retinal vascular changes and cardiac remodelling in systemic hypertension. Ther Adv Cardiovasc Dis. 2016;10(4):224-230. doi:10.1177/1753944716630869
26. Kanar B, §im§ek EE, Kanar S. Left atrial volume changes is an early marker of end-organ damage in essential hypertension: a multidisciplinary approach to an old problem. Am J Card. 2018;121(8):101—102. doi:10.1016/j.amjcard.2018.03.235
27. Huang QX, Zhu PL, Huang F, Lin F, Gao ZH, Chen FL et al. The relationship between association of microalbuminuria and retinal vessel diameter in population with essential hypertension. Zhonghua Nei Ke Za Zhi. 2013;52(4):309-312.
28. Kangwagye P, Rwebembera J, Wilson T, BajunirweF. Microalbuminuria and Retinopathy among Hypertensive Nondiabetic Patients at a Large Public Outpatient Clinic in Southwestern Uganda. Int J Nephrol. 2018(2018):8. doi.org/10.1155/2018/4802396
29. Meyer M, Klein B, Klein R, Palta P, Sharrett AR, Heiss G et al. Central arterial stiffness and retinal vessel calibers the Atherosclerosis Risk in Communities Study-Neurocognitive Study. J Hypertens. 2020;38(2):266-273. doi:10.1097/HJH.0000000000002252
30. Wong T, Klein R, Sharrett A, Duncan B, Couper D, Tielsch J et al. Retinal arteriolar narrowing and risk of coronary heart disease in men and women. The Atherosclerosis Risk in Communities Study. J Am Med Assoc. 2002;287(9):1153-1159.
31. Patton N, Aslam T, Macgillivray T, Pattie A, Deary IJ, Dhillon B. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat. 2005;206 (4):319-348.
32. Leung H, Wang JJ, Rochtchina E, Wong TY, Klein R, Mitchell P. Impact of current and past blood pressure on retinal arteriolar diameter in an older population. J Hypertens. 2004;22(8): 1543-1549.
33. Lim HB, Kim YW, Nam KY, Ryu CK, Jo YJ, Kim JY. Signal strength as an important factor in the analysis of peripapillary microvascular density using optical coherence tomography angiography. Ski Rep. 2019;9(1):16299. doi:10.1038/s41598-01952818-x
34. Hua D, Xu Y, Zeng X, Yang N, Jiang M, Zhang X et al. Use of optical coherence tomography angiography for assessment of microvascular changes in the macula and optic nerve head in hypertensive patients without hypertensive retinopathy. Microvasc Res. 2019;129:103969. doi:10.1016/j.mvr.2019.103969
35. AttaAllah HR, Mohamed AAM, Ali MA. Macular vessels density in diabetic retinopathy: quantitative assessment using optical coherence tomography angiography. Int Ophthalmol. 2019;39(8):1845-1859. doi:10.1007/s10792-018-1013-0
36. Sato R, Kunikata H, Asano Т, Aizawa N, Kiyota N, Shiga Y et al. Quantitative analysis of the macula with optical coherence tomography angiography in normal Japanese subjects: The Taiwa Study. Sci Rep. 2019;9(1):8875. doi:10.1038/s41598-019-45336-3
37. Драпкина О. М., Гегенава Б. Б. N-терминальный про-пептид проколлагена III типа в качестве возможного сывороточного маркера фиброза миокарда у больных сахарным диабетом 2-го типа. Кардиоваскулярная терапия и профилактика. 2018;17(3):17-21.
38. Ghoul BE, Squalli T, Servais A, Elie C, Meas-Yedid V, Trivint C et al. Urinary procollagen III aminoterminal propeptide (PIIINP): a fibrotest for the nephrologist. Clin J Am Soc Nephrol. 2010;5(2):205-210. doi:10.2215/CJN.06610909
39. Lieb W, Song RJ, Xanthakis V, Vasan RS. Association of circulating tissue inhibitor of metalloproteinases-1 and procollagen type III aminoterminal peptide levels with incident heart failure and chronic kidney disease. J Am Heart Association. 2019;8(7): e011426. doi:10.1161/JAHA.118.011426
40. Wang YC, Lee JK, Lin WC, Wu V The serum concentrations of procollagen propeptides in hypertensive patients with or without diabetes. Acta Cardiol Sin. 2008;24:198-203.
41. Agarwal I, Arnold A, Glazer NL, Barasch E, Djousse L, Fitzpatrick AL et al. Fibrosis-related biomarkers and large and small vessel disease: the Cardiovascular Health Study. Atherosclerosis. 2015;239(2):539-546. doi:10.1016/j.atherosclerosis.2015.02.020
42. Covas DT, Panepucci RA, Fontes AM, Silva WA, Orellana MD, Freitas MC et al. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD 146+ perivascular cells and fibroblasts. Exp Hematol. 2008;36(5):642-654. doi:10.1016/j.exphem.2007.12.015