1. Clark AL, Sparrow JL, Coats AJS. Muscle fatigue and dyspnoea in chronic heart failure: two sides of the same coin? European Heart Journal. 1995;16(1):49–52. DOI: 10.1093/eurheartj/16.1.49
2. Dubé B-P, Agostoni P, Laveneziana P. Exertional dyspnoea in chronic heart failure: the role of the lung and respiratory mechanical factors. European Respiratory Review. 2016;25(141):317–32. DOI: 10.1183/16000617.0048-2016
3. Morosin M, Farina S, Vignati C, Spadafora E, Sciomer S, Salvioni E et al. Exercise performance, haemodynamics, and respiratory pattern do not identify heart failure patients who end exercise with dyspnoea from those with fatigue. ESC Heart Failure. 2018;5(1):115–9. DOI: 10.1002/ehf2.12207
4. Gorter TM, Hoendermis ES, Van Veldhuisen DJ, Voors AA, Lam CSP, Geelhoed B et al. Right ventricular dysfunction in heart failure with preserved ejection fraction: a systematic review and meta-analysis. European Journal of Heart Failure. 2016;18(12):1472–87. DOI: 10.1002/ejhf.630
5. Ramalho SHR, Cipriano Junior G, Vieira PJC, Nakano EY, Winkelmann ER, Callegaro CC et al. Inspiratory muscle strength and six-minute walking distance in heart failure: Prognostic utility in a 10 years follow up cohort study. PLOS ONE. 2019;14(8):e0220638. DOI: 10.1371/journal.pone.0220638
6. Corrà U, Pistono M, Mezzani A, Braghiroli A, Giordano A, Lanfranchi P et al. Sleep and Exertional Periodic Breathing in Chronic Heart Failure: Prognostic Importance and Interdependence. Circulation. 2006;113(1):44–50. DOI: 10.1161/CIRCULATIONAHA.105.543173
7. Sun X-G, Hansen JE, Beshai JF, Wasserman K. Oscillatory Breathing and Exercise Gas Exchange Abnormalities Prognosticate Early Mortality and Morbidity in Heart Failure. Journal of the American College of Cardiology. 2010;55(17):1814–23. DOI: 10.1016/j.jacc.2009.10.075
8. Piepoli M. Aetiology and pathophysiological implications of oscillatory ventilation at rest and during exercise in chronic heart failure. Do Cheyne and Stokes have an important message for modern-day patients with heart failure? European Heart Journal. 1999;20(13):946– 53. DOI: 10.1053/euhj.1999.1506
9. Чучалин А.Г. Одышка: нейробиологические и клинические аспекты. Пульмонология. 2021;31(6):695–700. DOI: 10.18093/0869-0189-2021-31-6-695-700
10. Беграмбекова Ю.Л., Арутюнов Г.П., Глезер М.Г., Каранадзе H.А., Колесникова Е.А., Лелявина Т.А. и др. Методология оценки функционального резерва и переносимости физической нагрузки при проведении клинических исследований у пациентов с ХСН (согласительный документ редколлегии журнала «Кардиология», Правления ОССН и Рабочей группы ОССН «Немедикаментозные методы лечения»). Кардиология. 2024;64(7):4-26. DOI: 10.18087/cardio.2024.7.n2637
11. Cahalin LP, Chase P, Arena R, Myers J, Bensimhon D, Peberdy MA et al. A meta-analysis of the prognostic significance of cardiopulmonary exercise testing in patients with heart failure. Heart Failure Reviews. 2013;18(1):79–94. DOI: 10.1007/s10741-012-9332-0
12. Mead J. Control of respiratory frequency. Journal of Applied Physiology. 1960;15(3):325–36. DOI: 10.1152/jappl.1960.15.3.325
13. Clark FJ, Von Euler C. On the regulation of depth and rate of breathing. The Journal of Physiology. 1972;222(2):267–95. DOI: 10.1113/ jphysiol.1972.sp009797
14. Milic-Emili G, Petit JM, Deroanne R. Mechanical work of breathing during exercise in trained and untrained subjects. Journal of Applied Physiology. 1962;17(1):43–6. DOI: 10.1152/jappl.1962.17.1.43
15. Koch S, Welch JF, Tran R, Ramsook AH, Hung A, Carlsten C et al. Ventilatory responses to constant load exercise following the inhalation of a short-acting ß2-agonist in a laboratory-controlled diesel exhaust exposure study in individuals with exercise-induced bronchoconstriction. Environment International. 2021;146:106182. DOI: 10.1016/j.envint.2020.106182
16. Johnson BD, Reddan WG, Seow KC, Dempsey JA. Mechanical Constraints on Exercise Hyperpnea in a Fit Aging Population. American Review of Respiratory Disease. 1991;143(5 Pt 1):968–77. DOI: 10.1164/ajrccm/143.5_Pt_1.968
17. Gideon EA, Cross TJ, Coriell CL, Duke JW. The effect of estimating chest wall compliance on the work of breathing during exercise as determined via the modified Campbell diagram. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2021;320(3):R268–75. DOI: 10.1152/ajpregu.00263.2020
18. Cross TJ, Sabapathy S, Beck KC, Morris NR, Johnson BD. The resistive and elastic work of breathing during exercise in patients with chronic heart failure. European Respiratory Journal. 2012;39(6):1449–57. DOI: 10.1183/09031936.00125011
19. Cross TJ, Gideon EA, Morris SJ, Coriell CL, Hubbard CD, Duke JW. A comparison of methods used to quantify the work of breathing during exercise. Journal of Applied Physiology. 2021;131(3):1123–33. DOI: 10.1152/japplphysiol.00411.2021
20. Шабаев В.С., Оразмагомедова И.В., Мазурок В.А., Березина А.В., Баутин А.Е., Васильева Л.Г. и др. Спирометрические и структурно-функциональные изменения работы аппарата внешнего дыхания у пациентов с хронической сердечной недостаточностью. Общая реаниматология. 2023;19(5):39-45. DOI: 10.15360/1813-9779-2023-5-2344
21. Шабаев В.С., Оразмагомедова И.В., Мазурок В.А., Березина А.В., Баутин А.Е., Васильева Л.Г. и др. Диафрагмальная дисфункция у пациентов с хронической сердечной недостаточностью. Анестезиология и реаниматология. 2023;5:44-51. DOI: 10.17116/anaesthesiology202305144
22. Арутюнов А.Г., Ильина К.В., Арутюнов Г.П., Колесникова Е.А., Пчелин В.В., Кулагина Н.П. и др. Морфофункциональные особенности диафрагмы у больных с хронической сердечной недостаточностью. Кардиология. 2019;59(1):12-21. DOI: 10.18087/cardio.2019.1.2625
23. Agostoni P, Pellegrino R, Conca C, Rodarte JR, Brusasco V. Exercise hyperpnea in chronic heart failure: relationships to lung stiffness and expiratory flow limitation. Journal of Applied Physiology. 2002;92(4):1409–16. DOI: 10.1152/japplphysiol.00724.2001
24. Kitzman DW, Higginbotham MB, Cobb FR, Sheikh KH, Sullivan MJ. Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: Failure of the Frank-Starling mechanism. Journal of the American College of Cardiology. 1991;17(5):1065–72. DOI: 10.1016/0735-1097(91)90832-T
25. Lalande S, Johnson BD. Breathing strategy to preserve exercising cardiac function in patients with heart failure. Medical Hypotheses. 2010;74(3):416–21. DOI: 10.1016/j.mehy.2009.09.030
26. Mcelvaney G, Blackie S, Morrison NJ, Wilcox PG, Fairbarn MS, Pardy RI. Maximal Static Respiratory Pressures in the Normal Elderly. American Review of Respiratory Disease. 1989;139(1):277–81. DOI: 10.1164/ajrccm/139.1.277
27. Taya M, Amiya E, Hatano M, Saito A, Nitta D, Maki H et al. Clinical importance of respiratory muscle fatigue in patients with cardiovascular disease. Medicine. 2020;99(34):e21794. DOI: 10.1097/MD.0000000000021794
28. Chua TP, Ponikowski P, Harrington D, Anker SD, Webb-Peploe K, Clark AL et al. Clinical Correlates and Prognostic Significance of the Ventilatory Response to Exercise in Chronic Heart Failure. Journal of the American College of Cardiology. 1997;29(7):1585–90. DOI: 10.1016/S0735-1097(97)00078-8
29. Murias G, Blanch L, Lucangelo U. The physiology of ventilation. Respiratory Care. 2014;59(11):1795–807. DOI: 10.4187/respcare.03377
30. Sullivan MJ, Higginbotham MB, Cobb FR. Increased exercise ventilation in patients with chronic heart failure: intact ventilatory control despite hemodynamic and pulmonary abnormalities. Circulation. 1988;77(3):552–9. DOI: 10.1161/01.CIR.77.3.552
31. Smith JR, Olson TP. Ventilatory constraints influence physiological dead space in heart failure. Experimental Physiology. 2019;104(1):70–80. DOI: 10.1113/EP087183
32. Smith JR, Joyner MJ, Curry TB, Borlaug BA, Keller-Ross ML, Van Iterson EH et al. Locomotor muscle group III/IV afferents constrain stroke volume and contribute to exercise intolerance in human heart failure. The Journal of Physiology. 2020;598(23):5379–90. DOI: 10.1113/JP280333
33. Woods PR, Olson TP, Frantz RP, Johnson BD. Causes of Breathing Inefficiency During Exercise in Heart Failure. Journal of Cardiac Failure. 2010;16(10):835–42. DOI: 10.1016/j.cardfail.2010.05.003
34. Matsumoto A, Itoh H, Eto Y, Kobayashi T, Kato M, Omata M et al. End-tidal CO2 pressure decreases during exercise in cardiac patients. Journal of the American College of Cardiology. 2000;36(1):242–9. DOI: 10.1016/S0735-1097(00)00702-6
35. Van Iterson EH, Johnson BD, Borlaug BA, Olson TP. Physiological dead space and arterial carbon dioxide contributions to exercise ventilatory inefficiency in patients with reduced or preserved ejection fraction heart failure. European Journal of Heart Failure. 2017;19(12):1675–85. DOI: 10.1002/ejhf.913
36. Wensel R, Francis DP, Georgiadou P, Scott A, Genth-Zotz S, Anker SD et al. Exercise hyperventilation in chronic heart failure is not caused by systemic lactic acidosis. European Journal of Heart Failure. 2005;7(7):1105–11. DOI: 10.1016/j.ejheart.2004.12.005
37. Javaheri S, Badr MS. Central sleep apnea: pathophysiologic classification. Sleep. 2023;46(3):zsac113. DOI: 10.1093/sleep/zsac113
38. Benveniste Y. On the decay of end effects in conduction phenomena: A sandwich strip with imperfect interfaces of low or high conductivity. Journal of Applied Physics. 1999;86(3):1273–9. DOI: 10.1063/1.370881
39. Del Rio R. The carotid body and its relevance in pathophysiology. Experimental Physiology. 2015;100(2):121–3. DOI: 10.1113/expphysiol.2014.079350
40. Giannoni A, Emdin M, Bramanti F, Iudice G, Francis DP, Barsotti A et al. Combined Increased Chemosensitivity to Hypoxia and Hypercapnia as a Prognosticator in Heart Failure. Journal of the American College of Cardiology. 2009;53(21):1975–80. DOI: 10.1016/j.jacc.2009.02.030
41. Iturriaga R. Translating carotid body function into clinical medicine. The Journal of Physiology. 2018;596(15):3067–77. DOI: 10.1113/JP275335
42. Del Rio R, Moya EA, Iturriaga R. Carotid body and cardiorespiratory alterations in intermittent hypoxia: the oxidative link. European Respiratory Journal. 2010;36(1):143–50. DOI: 10.1183/09031936.00158109
43. Rey S, Del Rio R, Iturriaga R. Contribution of endothelin-1 to the enhanced carotid body chemosensory responses induced by chronic intermittent hypoxia. Brain Research. 2006;1086(1):152–9. DOI: 10.1016/j.brainres.2006.02.082
44. Barrett-O’Keefe Z, Lee JF, Berbert A, Witman MAH, Nativi-Nicolau J, Stehlik J et al. Metaboreceptor activation in heart failure with reduced ejection fraction: Linking cardiac and peripheral vascular haemodynamics. Experimental Physiology. 2018;103(6):807–18. DOI: 10.1113/EP086948
45. Roberto S, Mulliri G, Milia R, Solinas R, Pinna V, Sainas G et al. Hemodynamic response to muscle reflex is abnormal in patients with heart failure with preserved ejection fraction. Journal of Applied Physiology. 2017;122(2):376–85. DOI: 10.1152/japplphysiol.00645.2016
46. Olson TP, Joyner MJ, Dietz NM, Eisenach JH, Curry TB, Johnson BD. Effects of respiratory muscle work on blood flow distribution during exercise in heart failure. The Journal of Physiology. 2010;588(13):2487–501. DOI: 10.1113/jphysiol.2009.186056
47. Smith JR, Berg JD, Curry TB, Joyner MJ, Olson TP. Respiratory muscle work influences locomotor convective and diffusive oxygen transport in human heart failure during exercise. Physiological Reports. 2020;8(12):e14484. DOI: 10.14814/phy2.14484
48. Gandevia SC. Neural mechanisms underlying the sensation of breathlessness: kinesthetic parallels between respiratory and limb muscles. Australian and New Zealand Journal of Medicine. 1988;18(1):83–91. DOI: 10.1111/j.1445-5994.1988.tb02252.x
49. Allen DG, Westerblad H. Role of phosphate and calcium stores in muscle fatigue. The Journal of Physiology. 2001;536(3):657–65. DOI: 10.1111/j.1469-7793.2001.t01-1-00657.x