1. Garratt LW. Current Understanding of the Neutrophil Transcriptome in Health and Disease. Cells. 2021;10(9):2406. doi:10.3390/cells10092406.
2. Ng LG, Ostuni R, Hidalgo A. Heterogeneity of neutrophils. Nat Rev Immunol. 2019;19(4):255-65. doi:10.1038/s41577-019-0141-8.
3. Palomino-Segura M, Sicilia J, Ballesteros I, et al. Strategies of neutrophil diversification. Nat Immunol. 2023;24(4):575-84. doi:10.1038/s41590-023-01452-x.
4. Zhang X, Kang Z, Yin D, et al. Role of neutrophils in different stages of atherosclerosis. Innate Immun. 2023;29(6):97-109. doi:10.1177/17534259231189195.
5. Silvestre-Roig C, Braster Q, Ortega-Gomez A, et al. Neutrophils as regulators of cardiovascular inflammation. Nat Rev Cardiol. 2020;17(6):327-40. doi:10.1038/s41569-019-0326-7.
6. Silvestre-Roig C, Braster Q, Wichapong K, et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature. 2019;569(7755):236-40. doi:10.1038/s41586-019-1167-6.
7. Волков А. М., Мурашов И. С., Полонская Я. В. и др. Изменение содержания матриксных металлопротеиназ и их тканевая экспрессия в атеросклеротических бляшках разных типов. Кардиология. 2018;58(10):12-8. doi:10.18087/cardio.2018.10.10180.
8. de Vries JJ, Autar ASA, van Dam-Nolen DHK, et al. Association between plaque vulnerability and neutrophil extracellular traps (NETs) levels: The Plaque At RISK study. PLoS One. 2022;9;17(6):e0269805. doi:10.1371/journal.pone.0269805.
9. Ezhov M, Safarova M, Afanasieva O, et al. Matrix Metalloproteinase 9 as a Predictor of Coronary Atherosclerotic Plaque Instability in Stable Coronary Heart Disease Patients with Elevated Lipoprotein(a) Levels. Biomolecules. 2019;9(4):129. doi:10.3390/biom9040129.
10. Генкель В. В., Кузнецова А. С., Лебедев Е. В. и др. Прогностическая значимость атеросклеротического поражения одного или двух сосудистых бассейнов у пациентов высокого и очень высокого сердечно-сосудистого риска. Кардиоваскулярная терапия и профилактика. 2021;20(2):2669. doi:10.15829/1728-8800-2021-2669.
11. Genkel V, Kuznetsova A, Lebedev E, et al. Carotid total plaque area as an independent predictor of short-term subclinical polyvascular atherosclerosis progression and major adverse cardiac and cerebrovascular events. Ther Adv Cardiovasc Dis. 2023;17:17539447231194861. doi:10.1177/17539447231194861.
12. Генкель В. В., Кузнецова А. С., Лебедев Е. В. и др. Факторы, связанные с эхогенностью атеросклеротических бляшек, у пациентов в возрасте 40-64 лет с каротидным атеросклерозом. Кардиология. 2021;61(6):35-40. doi:10.18087/cardio.2021.6.n1536.
13. Školoudík D, Kešnerová P, Hrbáč T, et al. Risk factors for carotid plaque progression after optimising the risk factor treatment: substudy results of the Atherosclerotic Plaque Characteristics Associated with a Progression Rate of the Plaque and a Risk of Stroke in Patients with the carotid Bifurcation Plaque Study (ANTIQUE). Stroke Vasc Neurol. 2022;7(2):132-9. doi:10.1136/svn-2021-001068.
14. Shah AD, Denaxas S, Nicholas O, et al. Neutrophil Counts and Initial Presentation of 12 Cardiovascular Diseases: A CALIBER Cohort Study. J Am Coll Cardiol. 2017;69(9):1160-9. doi:10.1016/j.jacc.2016.12.022.
15. Luo J, Thomassen JQ, Nordestgaard BG, et al. Neutrophil counts and cardiovascular disease. Eur Heart J. 2023;44(47):4953-64. doi:10.1093/eurheartj/ehad649.
16. Soehnlein O, Döring Y. Beyond association: high neutrophil counts are a causal risk factor for atherosclerotic cardiovascular disease. Eur Heart J. 2023;44(47):4965-7. doi:10.1093/eurheartj/ehad711.
17. Wan M, Lu Y, Mao B, et al. Immature neutrophil is associated with coronary plaque vulnerability based on optical coherence tomography analysis. Int J Cardiol. 2023;374:89-93. doi:10.1016/j.ijcard.2023.01.004.
18. Aroca-Crevillén A, Vicanolo T, Ovadia S, et al. Neutrophils in Physiology and Pathology. Annu Rev Pathol. 2024;19:227-59. doi:10.1146/annurev-pathmechdis-051222-015009.
19. Liu F, Mao Y, Yan J, et al. Bionic Microbubble Neutrophil Composite for Inflammation-Responsive Atherosclerotic Vulnerable Plaque Pluripotent Intervention. Research (Wash D C). 2022;2022:9830627. doi:10.34133/2022/9830627.
20. Pérez-Rodríguez S, Huang SA, Borau C, et al. Microfluidic model of monocyte extravasation reveals the role of hemodynamics and subendothelial matrix mechanics in regulating endothelial integrity. Biomicrofluidics. 2021;15(5):054102. doi:10.1063/5.0061997.
21. Liu M, Zhang Z, Zhao Y, et al. Combining ultrasound with bio-indicators reveals progression of carotid stenosis. Ann Palliat Med. 2021;10(11):11539-47. doi:10.21037/apm-21-2666.