Статья
NLRP3 инфламмасома в патогенезе острого инфаркта миокарда: взгляд кардиолога
В течение пяти лет после перенесенного инфаркта миокарда (ИМ) у трети больных наблюдается развитие вторичных серьезных неблагоприятных сердечно-сосудистых событий (MACE). Первыми рандомизированными клиническими исследованиями, показавшими эффективность противовоспалительных стратегий в профилактике MACE, являются CANTOS, COLCOT и LoDoCo2. Эти исследования выделили эффективную терапевтическую мишень — NLRP3 инфламмасому. Результаты COLCOT и LoDoCo2 привели к тому, что колхицин стал первым противовоспалительным препаратом, который вошел в клинические рекомендации по лечению больных ишемической болезнью сердца (ИБС). Тем не менее, решение вопросов применения колхицина в рутинной клинической практике требует от врача-кардиолога знаний об основах молекулярных механизмов воспаления при сердечно-сосудистых заболеваниях. В обзоре обсуждаются текущие знания о воспалении и NLRP3 инфламмасоме в патогенезе ИБС и ИМ, результаты и вопросы их применения в клинической кардиологии.
1. Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. The Lancet. 2017;389(10065):197-210. doi:10.1016/S0140-6736(16)30677-8.
2. Camacho X, Nedkoff L, Wright FL, et al. Relative contribution of trends in myocardial infarction event rates and case fatality to declines in mortality: an international comparative study of 1·95 million events in 80·4 million people in four countries. Lancet Public Health. 2022;7(3):e229-e239. doi:10.1016/S2468-2667(22)00006-8.
3. Vaduganathan M, Mensah GA, Turco JV, et al. The Global Burden of Cardiovascular Diseases and Risk. J Am Coll Cardiol. 2022;80(25):2361-71. doi:10.1016/j.jacc.2022.11.005.
4. Ritsinger V, Nyström T, Saleh N, et al. Heart failure is a common complication after acute myocardial infarction in patients with diabetes: A nationwide study in the SWEDEHEART registry. Eur J Prev Cardiol. 2020;27(17):1890-901. doi:10.1177/2047487319901063.
5. Steen DL, Khan I, Andrade K, et al. Event Rates and Risk Factors for Recurrent Cardiovascular Events and Mortality in a Contemporary Post Acute Coronary Syndrome Population Representing 239 234 Patients During 2005 to 2018 in the United States. J Am Heart Assoc Cardiovasc Cerebrovasc Dis. 2022;11(9):e022198. doi:10.1161/JAHA.121.022198.
6. Liberale L, Montecucco F, Schwarz L, et al. Inflammation and cardiovascular diseases: lessons from seminal clinical trials. Cardiovasc Res. 2021;117(2):411-22. doi:10.1093/cvr/cvaa211.
7. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC). Eur Heart J. 2021;42(34):3227-337. doi:10.1093/eurheartj/ehab484.
8. Virani SS, Newby LK, Arnold SV, et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients With Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation. 2023;148(9):e9-e119. doi:10.1161/CIR.0000000000001168.
9. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017;377(12):1119-31. doi:10.1056/NEJMoa1707914.
10. Imazio M, Nidorf M. Colchicine and the heart. Eur Heart J. 2021;42(28):2745-60. doi:10.1093/eurheartj/ehab221.
11. Nidorf SM, Fiolet ATL, Mosterd A, et al. Colchicine in Patients with Chronic Coronary Disease. N Engl J Med. 2020;383(19):1838-47. doi:10.1056/NEJMoa2021372.
12. Tardif JC, Kouz S, Waters DD, et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N Engl J Med. 2019;381(26):2497-505. doi:10.1056/NEJMoa1912388.
13. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417-26. doi:10.1016/s1097-2765(02)00599-3.
14. Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10(3):241-7. doi:10.1038/ni.1703.
15. Olsen MB, Gregersen I, Sandanger Ø, et al. Targeting the Inflammasome in Cardiovascular Disease. JACC Basic Transl Sci. 2021;7(1):84-98. doi:10.1016/j.jacbts.2021.08.006.
16. Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477-89. doi:10.1038/s41577-019-0165-0.
17. Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol Baltim Md 1950. 2009;183(2):787-91. doi:10.4049/jimmunol.0901363.
18. Xing Y, Yao X, Li H, et al. Cutting Edge: TRAF6 Mediates TLR/IL-1R Signaling-Induced Nontranscriptional Priming of the NLRP3 Inflammasome. J Immunol Baltim Md 1950. 2017;199(5):1561-66. doi:10.4049/jimmunol.1700175.
19. Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol. 2018;15(4):203-14. doi:10.1038/nrcardio.2017.161.
20. Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153-8. doi:10.1038/nature18629.
21. Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660-5. doi:10.1038/nature15514.
22. Seta Y, Kanda T, Tanaka T, et al. Interleukin 18 in acute myocardial infarction. Heart Br Card Soc. 2000;84(6):668. doi:10.1136/heart.84.6.668.
23. Kirii H, Niwa T, Yamada Y, et al. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2003;23(4):656-60. doi:10.1161/01.ATV.0000064374.15232.C3.
24. Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357-61. doi:10.1038/nature08938.
25. Usui F, Shirasuna K, Kimura H, et al. Critical role of caspase-1 in vascular inflammation and development of atherosclerosis in Western diet-fed apolipoprotein E-deficient mice. Biochem Biophys Res Commun. 2012;425(2):162-8. doi:10.1016/j.bbrc.2012.07.058.
26. Paramel Varghese G, Folkersen L, Strawbridge RJ, et al. NLRP3 Inflammasome Expression and Activation in Human Atherosclerosis. J Am Heart Assoc. 2016;5(5):e003031. doi:10.1161/JAHA.115.003031.
27. Niyonzima N, Bakke SS, Gregersen I, et al. Cholesterol crystals use complement to increase NLRP3 signaling pathways in coronary and carotid atherosclerosis. EBioMedicine. 2020;60:102985. doi:10.1016/j.ebiom.2020.102985.
28. Jin Y, Fu J. Novel Insights Into the NLRP3 Inflammasome in Atherosclerosis. J Am Heart Assoc. 2019;8(12):e012219. doi:10.1161/JAHA.119.012219.
29. Folco EJ, Sukhova GK, Quillard T, Libby P. Moderate Hypoxia Potentiates Interleukin-1β Production in Activated Human Macrophages. Circ Res. 2014;115(10):875-83. doi:10.1161/CIRCRESAHA.115.304437.
30. Folco EJ, Sheikine Y, Rocha VZ, et al. Hypoxia But Not Inflammation Augments Glucose Uptake in Human Macrophages. J Am Coll Cardiol. 2011;58(6):603-14. doi:10.1016/j.jacc.2011.03.044.
31. Hofbauer TM, Ondracek AS, Lang IM. Neutrophil Extracellular Traps in Atherosclerosis and Thrombosis. In: von Eckardstein A, Binder CJ, eds. Prevention and Treatment of Atherosclerosis: Improving State-of-the-Art Management and Search for Novel Targets. Springer; 2022.
32. Stone PH, Libby P, Boden WE. Fundamental Pathobiology of Coronary Atherosclerosis and Clinical Implications for Chronic Ischemic Heart Disease Management — The Plaque Hypothesis: A Narrative Review. JAMA Cardiol. 2023;8(2):192-201. doi:10.1001/jamacardio.2022.3926.
33. Shi CS, Shenderov K, Huang NN, et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol. 2012;13(3):255-63. doi:10.1038/ni.2215.
34. Kotla S, Singh NK, Rao GN. ROS via BTK-p300-STAT1-PPARγ signaling activation mediates cholesterol crystals-induced CD36 expression and foam cell formation. Redox Biol. 2017;11:350-64. doi:10.1016/j.redox.2016.12.005.
35. Rondeau JM, Ramage P, Zurini M, Gram H. The molecular mode of action and species specificity of canakinumab, a human monoclonal antibody neutralizing IL-1β. mAbs. 2015;7(6):1151-60. doi:10.1080/19420862.2015.1081323.
36. Nidorf SM, Eikelboom JW, Thompson PL. Targeting cholesterol crystal-induced inflammation for the secondary prevention of cardiovascular disease. J Cardiovasc Pharmacol Ther. 2014;19(1):45-52. doi:10.1177/1074248413499972.
37. Misawa T, Takahama M, Kozaki T, et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol. 2013;14(5):454-60. doi:10.1038/ni.2550.
38. Liu Y, Lian K, Zhang L, et al. TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury. Basic Res Cardiol. 2014;109(5):415. doi:10.1007/s00395-014-0415-z.
39. Everett BM, Cornel JH, Lainscak M, et al. Anti-Inflammatory Therapy With Canakinumab for the Prevention of Hospitalization for Heart Failure. Circulation. 2019;139(10):1289-99. doi:10.1161/CIRCULATIONAHA.118.038010.
40. Ridker PM, Bhatt DL, Pradhan AD, et al. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: a collaborative analysis of three randomised trials. The Lancet. 2023;401(10384):1293-301. doi:10.1016/S0140-6736(23)00215-5.
41. Mewton N, Roubille F, Bresson D, et al. Effect of Colchicine on Myocardial Injury in Acute Myocardial Infarction. Circulation. 2021;144(11):859-69. doi:10.1161/CIRCULATIONAHA.121.056177.
42. Nogic J, Mehta O, Tong D, et al. Colchicine in the Management of Acute Coronary Syndrome: A Meta-analysis. Cardiol Ther. 2023;12(1):171-81. doi:10.1007/s40119-022-00298-y.
43. Libby P, Pasterkamp G, Crea F, Jang IK. Reassessing the Mechanisms of Acute Coronary Syndromes. Circ Res. 2019;124(1):150-60. doi:10.1161/CIRCRESAHA.118.311098.
44. Jia H, Dai J, Hou J, et al. Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion (the EROSION study). Eur Heart J. 2017;38(11):792-800. doi:10.1093/eurheartj/ehw381.
45. Xing L, Yamamoto E, Sugiyama T, et al. EROSION Study (Effective Anti-Thrombotic Therapy Without Stenting: Intravascular Optical Coherence Tomography—Based Management in Plaque Erosion). Circ Cardiovasc Interv. 2017;10(12):e005860. doi:10.1161/CIRCINTERVENTIONS.117.005860.
46. Byrne RA, Rossello X, Coughlan JJ, et al. 2023 ESC Guidelines for the management of acute coronary syndromes: Developed by the task force on the management of acute coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J. 2023:ehad191. doi:10.1093/eurheartj/ehad191.
47. Nordeng J, Schandiz H, Solheim S, et al. The Inflammasome Signaling Pathway Is Actively Regulated and Related to Myocardial Damage in Coronary Thrombi from Patients with STEMI. Mediators Inflamm. 2021;2021:e5525917. doi:10.1155/2021/5525917.