1. Kalil GZ, Haynes WG. Sympathetic nervous system in obesity-related hypertension: mechanisms and clinical implications. Hypertens Res. 2012;35(1):4-16.
2. Anari R, Amani R, Latifi SM, et al. Association of obesity with hypertension and dyslipidemia in type 2 diabetes mellitus subjects. Diabetes Metab Syndr. 2017;11(1):37-41. doi:10.1016/j.dsx.2016.07.004.
3. Wormser D, Kaptoge S, Di Angelantonio E, et al. Separate and combined associations of bodymass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet. 2011;377(9771):1085-95. doi:10.1016/S0140-6736(11)60105-0.
4. Wilson PW, D’Agostino RB, Sullivan L, et al. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch Intern Med. 2002;162(16):1867-72.
5. Bazzocchi A, Diano D, Ponti F, et al. Health and ageing: a cross-sectional study of body composition. Clin Nutr. 2013;32(4):569-78. doi:10.1016/j.clnu.2012.10.004.
6. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116:39-48.
7. Despres JP, Moorjani S, Lupien PJ, et al. Regional distribution of body fat, plasma insulin, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis. 1990;10:497-511.
8. Stout RW, Beierman EI, Ross R.The effect of insulin on the proliferation of cultured primate arterial smooth muscle cells. Circ Res. 1975;36:319-27.
9. Kopf D, Muhlen I, Kroning G, et al. Insulin sensitivity and sodium excretion in normotensive offspring and hypertensive patients. Metabolism. 2001;50(8):929-35.
10. Grassi G. Assessment of sympathetic cardiovascular drive in human hypertension: achievements and perspectives. Hypertens Dallas Tex. 1979;2009(54):690-7.
11. Cosson E, Valensi P, Laude D, et al. Arterial stiffness and the autonomic nervous system during the development of Zucker diabetic fatty rats. Diabetes Metab. 2009;35:364-70.
12. Cosson E, Herisse M, Laude D, et al. Aortic stifness and pulse pressure amplifcation in Wistar-Kyoto and spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2007;292:H2506-2512.
13. Grassi G, Mark A, Esler M. The sympathetic nervous system alterations in human hypertension. Circ Res. 2015;116:976-90.
14. Manolis AJ, Poulimenos LE, Kallistratos MS, et al. Sympathetic overactivity in hypertension and cardiovascular disease. Curr Vasc Pharmacol. 2014;12:4-15.
15. Esler M.The sympathetic system and hypertension. Am J Hypertens. 2000;13:99S-105S.
16. Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114:1804-14.
17. Parati G, Esler M.The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J. 2012;33:1058-66.
18. Triposkiadis F, Karayannis G, Giamouzis G, et al. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54:1747-62.
19. Grassi G, Ram VS. Evidence for a critical role of the sympathetic nervous system in hypertension. J Am Soc Hypertens JASH. 2016;10:457-66.
20. Manzella D, Barbieri M, Rizzo MR, et al. Role of free fatty acids on cardiac autonomic nervous system in noninsulin-dependent diabetic patients: effects of metabolic control. J Clin Endocrinol Metab. 2001;86:6.
21. Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4:177-97.
22. Yahagi N.Hepatic control of energy metabolism via the autonomic nervous system. J Atheroscler Thromb. 2017;24:14-8.
23. Carnagarin R, Matthews VB, Herat LY, et al. Autonomic regulation of glucose homeostasis: a specific role for sympathetic nervous system activation. Curr Diabetes Rep. 2018;18:107.
24. Brook RD, Julius S.Autonomic imbalance, hypertension, and cardiovascular risk. Am J Hypertens. 2000;13:112S-122S.
25. Morton GJ, Muta K, Kaiyala KJ, et al. Evidence that the sympathetic nervous system elicits rapid, coordinated, and reciprocal adjustments of insulin secretion and insulin sensitivity during cold exposure. Diabetes. 2017;66:823-34.
26. Schumann U, Jenkinson CP, Alt A, et al. Sympathetic nervous system activity and antilipolytic response to iv-glucose load in subcutaneous adipose tissue of obese and obese type 2 diabetic subjects. PLoS ONE. 2017;12:e0173803.
27. Straznicky NE, Grima MT, Sari CI, et al. Reduction in peripheral vascular resistance predicts improvement in insulin clearance following weight loss. Cardiovasc Diabetol. 2015;14:113.
28. Edwards KM, Wilson KL, Sadja J, et al. Effects on blood pressure and autonomic nervous system function of a 12-week exercise or exercise plus DASH-diet intervention in individuals with elevated blood pressure. Acta Physiol Oxf Engl. 2011;203:343-50.
29. Goit RK, Ansari AH. Reduced parasympathetic tone in newly diagnosed essential hypertension. Indian Heart J. 2016;68:153-7.
30. Ayad F, Belhadj M, Pariés J, et al. Association between cardiac autonomic neuropathy and hypertension and its potential influence on diabetic complications. Diabet Med J Br Diabet Assoc. 2010;27:804-11.
31. Thorp AA, Schlaich MP. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J Diabetes Res. 2015;2015:341583.
32. Chapelot D, Charlot K.Physiology of energy homeostasis: models, actors, challenges and the glucoadipostatic loop. Metabolism. 2019;92:11-25.
33. Grassi G, Seravalle G, Dell’Oro R, et al. Adrenergic and reflex abnormalities in obesity--related hypertension. Hypertension. 2000;36:538-42.
34. Lindmark S, Lönn L, Wiklund U, et al. Dysregulation of the autonomic nervous system can be a link between visceral adiposity and insulin resistance. Obes Res. 2005; 13:717-28.
35. Tentolouris N, Tsigos C, Perea D, et al. Differential effects of high-fat and high-carbohydrate isoenergetic meals on cardiac autonomic nervous system activity in lean and obese women. Metabolism. 2003;52:1426-32.
36. Nagai N, Sakane N, Hamada T, et al. The effect of a highcarbohydrate meal on post-prandial thermogenesis and sympathetic nervous system activity in boys with a recent onset of obesity. Metabolism. 2005;54:430-8.
37. Straznicky NE, Lambert GW, Masuo K, et al. Blunted sympathetic neural response to oral glucose in obese subjects with the insulin-resistant metabolic syndrome. Am J Clin Nutr. 2009;89:27-36.
38. Valensi P, Ngoc PB, Idriss S, et al. Haemodynamic response to an isometric exercise test in obese patients: Influence of autonomic dysfunction. Int J Obes Relat Metab Disord. 1999;23:543-9.
39. Valensi P, Smagghue O, Pariès J, et al. Impairment of skin vasoconstrictive response to sympathetic activation in obese patients: Influence of rheological disorders. Metabolism. 2000;49:600-6.
40. Coats AJS, Cruickshank JM. Hypertensive subjects with type-2 diabetes, the sympathetic nervous system, and treatment implications. Int J Cardiol. 2014;174:702-9.
41. DeMarco VG, Aroor AR, Sowers JR. The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol. 2014;10:364-76.
42. Ma D, Feitosa MF, Wilk JB, et al. Leptin is associated with blood pressure and hypertension in women from the National Heart, Lung, and Blood Institute Family Heart Study. Hypertens Dallas Tex. 1979;2009(53):473-9.
43. Bell BB, Rahmouni K.Leptin as a mediator of obesity-induced hypertension. Curr Obes Rep. 2016;5:397-404.
44. Guarino D, Nannipieri M, Iervasi G, et al. The role of the autonomic nervous system in the pathophysiology of obesity. Front Physiol. 2017;8:665.
45. Vaz M, Jennings G, Turner A, et al. Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects. Circulation. 1997;96:3423-9.
46. Lee ZS, Critchley JA, Tomlinson B, et al. Urinary epinephrine and norepinephrine interrelations with obesity, insulin, and the metabolic syndrome in Hong Kong Chinese. Metabolism. 2001;50:135-43.
47. Grassi G, Seravalle G, Cattaneo BM, et al. Sympathetic activation in obese normotensive subjects. Hypertens Dallas Tex 1979. 1995;25:560-3.
48. Grassi G, Dell’Oro R, Facchini A, et al. Effect of central and peripheral body fat distribution on sympathetic and barorefex function in obese normotensives. J Hypertens. 2004;22:2363-9.
49. Straznicky NE, Lambert EA, Lambert GW, et al. Effects of dietary weight loss on sympathetic activity and cardiac risk factors associated with the metabolic syndrome. J Clin Endocrinol Metab. 2005;90(11):5998-6005. doi:10.1210/jc.2005-0961.
50. Maas AH, Franke HR. Women’s health in menopause with a focus on hypertension. Neth Heart J. 2009;17(2):68-72. doi:10.1007/BF03086220.
51. Steptoe A, Kivimäki M.Stress and cardiovascular disease. Nat Rev Cardiol. 2012;9(6): 360-70. doi:10.1038/nrcardio.2012.45.
52. Poitras VJ, Pyke KE. The impact of acute stress on vascular endothelial function: Evidence, mechanisms and importance. Int J Psychophysiol. 2013;88(2):124-35.
53. Banglore S, Parkar S, Grossman E, Messerli F. A meta-analysis of 94492 patients with hypertension treated with beta-blockers to determine the risk of new-onset diabetes mellitus. J Am Coll Cardiol. 2007;100:1254-62.
54. Dahlöf B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomized trial against atenolol. Lancet. 2002;359:995-1003.
55. Dahlöf B, Sever PS, Poulter NR, et al. for the ASCOT investigators. Prevention of cardio-vascular events with an antihypertensive regimen of amlodipine adding perindopril as required, in the Anglo-Scandinavian Cardiac Outcomes Trial Blood-Pressure Lowering Arm (ASCOT-BPLA): a multicenter randomized controlled trial. Lancet. 2005;366:895-906.
56. Simone G, Wachtell K, Palmieri V, et al. Body build and risk of cardiovascular events in hypertension and left ventricular hypertrophy: the LIFE (Losartan Intervention for Endpoint reduction in hypertension) Study. Circulation. 2005;111:1924-31.
57. UKPDS. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications of type 2 diabetes: UKPDS 39. BMJ. 1998;317:713-20.
58. Bakris GL, Fonseca V, Katholi RE, et al. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension a randomized controlled trial. JAMA. 2004;292:2227-36.
59. Grassi G, Trevano FQ, Facchini A, et al. Efficacy and tolerability profile of nebivolol vs atenolol in mid-to-moderate essential hypertension: results of a double-blind randomized multicentre trial. Blood Press Suppl. 2003;2:35-40.
60. Ernsberger P.The I1-imidazoline receptor and its cellular signaling pathways. Ann N Y Acad Sci. 1999;881:35-53.
61. Ernsberger P, Graves ME, Graf LM, et al. I1-imidazoline receptors. Defnition, characterization, distribution, andtransmembrane signaling. Ann N Y Acad Sci. 1995;763:22-42.
62. Haenni A, Lithell H.Moxonidine improves insulin sensitivity in insulinresistant hypertensives. J Hypertens Suppl. 1999;17:S29-35.
63. Fenton C, Keating GM, Lyseng-Williamson KA. Moxonidine: a review of its use in essential hypertension. Drugs. 2006;66:477-96.
64. Edwards LP, Brown-Bryan TA, McLean L, Ernsberger P.Pharmacological properties of the central antihypertensive agent, moxonidine. Cardiovasc Ther. 2012;30:199-208.
65. Prichard BNC, Simmons R, Rooks MJ, et al. A double-blind comparison of moxonidine and atenolol in the management of patients with mild-to-moderate hypertension. J.Cardiovasc. Pharmacol. 1992;20:45-9.
66. Wolf R.The treatment of hypertensive patients with a calcium antagonist or moxonidine: a comparison. J.Cardiovasc. Pharmacol. 1992;20:42-4.
67. Lotti G, Gianrossi R. Moxonidine vs. captopril in minor to intermediate hypertension. Double-blind study of effectiveness and tolerance. Fortschr. Med. 1993;111(27):429-32.
68. Kraft K, Vetter H.Twenty-four-hour blood pressure profiles in patients with mild-to-moderate hypertension: moxonidine versus captopril. J.Cardiovasc. Pharmacol. 1994;24. Suppl. 1:S29-S33.
69. Küppers HE, Jäger BA, Luszick JH, et al. Placebo-controlled comparison of the efficacy and tolerability of once-daily moxonidine and enalapril in mild-to-moderate essential hypertension. J.Hypertens. 1997;15(1):93-7.
70. Результаты исследования ALMAZ: впервые показано, что моксонидин повышает чувствительность к инсулину у больных артериальной гипертензией с ожирением. Ожирение и метаболизм. 2006;3(1):50-1. doi:10.14341/2071-8713-4943.
71. Sanjuliani AF, Francischetti EA, Genelhu de Abreu V, et al. Effects of Moxonidine on the Sympathetic Nervous System, Blood Pressure, Plasma Renin Activity, Plasma Aldosterone, Leptin, and Metabolic Profile in Obese Hypertensive Patients. Journal of Clinical and Basic Cardiology. 2004;7(1-4):19-25.
72. Rai J, Sandhu PS. A comparative study of the effect of moxonidine and telmisartan on blood pressure and insulin resistance in hypertensive patients. J.Drug Delivery Ther. 2015;5(4):9-13.
73. Бахшалиев А. Б., Сабзалиева Г. М., Джахангиров Т. Ш. Оптимизация терапии артериальной гипертензии у женщин в постменопаузе с использованием агониста имидазолиновых рецепторов — моксонидина. Кардиоваскулярная терапия и профилактика. 2006;5(1):37-44.
74. Дудинская Е. Н., Ткачёва О.Н., Базаева Е. В. и др. Новые возможности использования моксонидина в контроле артериального давления у пациенток с остеопенией. Кардиология. 2018;58(S7):36-45. doi:10.18087/cardio.2508.