1. Дедов И. И., Шестакова М. В., Майоров А. Ю., Мокрышева Н. Г., Андреева Е. Н., Безлепкина О. Б. и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом: клинические рекомендации (Вып. 11). Сахарный диабет. 2023;26(2S):1–231. doi:10.14341/DM13042
2. American Diabetes Association. Standards of medical care in diabetes. Diabetes Care. 2022;45(1). doi.org/10.2337/dc22-S007
3. Wajngarten M, Silva GS. Hypertension and stroke: update on treatment. Eur Cardiol. 2019;14(2): 111–115. doi:10.15420/ecr.2019
4. Li AL, Ji Y, Zhu S, Hu ZH, Xu XJ, Wang YW et al. Risk probability and influencing factors of stroke in followed-up hypertension patients. BMC Cardiovasc Disord. 2022;22(1):328. doi:10.1186/s12872-022-02780-w
5. Дедов И. И., Шестакова М. В., Викулова О. К., Железнякова А. В., Исаков М. А. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным регистра сахарного диабета на 01.01.2021. Сахарный диабет. 2021;24(3):204–221. doi:10.14341/DM12759
6. Kristensen SL, Rørth R, Jhund PS, Docherty KF, Sattar N, Preiss D et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019;7(10):776–785. doi:10.1016/S2213-8587(19)30249-9
7. Tsai WH, Chuang SM, Liu SC, Lee CC, Chien MN, Leung CH et al. Effects of SGLT2 inhibitors on stroke and its subtypes in patients with type 2 dia-betes: a systematic review and metaanalysis. Sci Rep. 2021;11(1):15364. doi:10.1038/s41598-021-94945-4
8. Pawlos A, Broncel M, Woźniak E, Gorzelak-Pabiś P. Neuroprotective effect of SGLT2 inhibitors. Molecules. 2021;26(23): 7213. doi:10.3390/molecules26237213
9. Zhu H, Zhang Y, Shi Z, Lu D, Li T, Ding Y et al. The neuroprotection of liraglutide against ischaemia-induced apoptosis through the activation of the PI3K/AKT and MAPK pathways. Sci Rep. 2016;6:26859. doi:10.1038/srep26859
10. Sato K, Kameda M, Yasuhara T, Agari T, Baba T, Wang F et al. Neuroprotective effects of liraglutide for stroke model of rats. Int J Mol Sci. 2013;14(11):21513–21524. doi:10.3390/ijms141121513
11. Basalay MV, Davidson SM, Yellon DM. Neuroprotection in rats following ischaemia-reper-fusion injury by GLP-1 analogues-liraglutide and semaglutide. Cardiovasc Drugs Ther. 2019;33(6):661–667. doi:10.1007/s10557-019-06915-8
12. Yang X, Feng P, Zhang X, Li D, Wang R, Ji C et al. The diabetes drug semaglutide reduces infarct size, inflammation, and apoptosis, and normalizes neurogenesis in a rat model of stroke. Neuropharmacology. 2019;158:107748. doi:10.1016/j.neuropharm.2019.107748
13. Ozempic (semaglutide). Tertiary pharmacology/toxicology review. 2017.
14. Karimipour M, Shojaei Zarghani S, Mohajer Milani M, Soraya H. Pre-treatment with metformin in comparison with posttreatment reduces cerebral ischemia reperfusion induced injuries in rats. Bull Emerg Trauma. 2018;6(2):115–121. doi:10.29252/beat-060205
15. Al-Awar A, Almási N, Szabó R, Takacs I, Murlasits Z, Szűcs G et al. Novel potentials of the DPP-4 inhibitor sitagliptin against ischemia-reperfusion (I/R) injury in rat ex-vivo heart model. Int J Mol Sci. 2018;19(10):3226. doi:10.3390/ijms19103226
16. Koizumi J. Experimental studies of ischemic brain edema. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Japanese J Stroke. 1986;8:1–8. doi.org/10.3995/jstroke.8.1
17. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989; 20(1):84–91. doi:10.1161/01.str.20.1.84
18. Garcia JH, Wagner S, Liu KF, Hu XJ. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke. 1995;26(4):627–34, discussion 635. doi:10.1161/01.str.26.4.627
19. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR. A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab. 1990;10(2):290–293.
20. Yu AS, Hirayama BA, Timbol G, Liu J, Basarah E, Kepe V et al. Functional expression of SGLTs in rat brain. Am J Physiol Cell Physiol. 2010;299(6): C1277–C1284. doi:10.1152/ajpcell.00296.2010
21. Lu P, Song Y, Zhu J, Meng H, Ye N, Wang M et al. Liraglutide protects injured neurons through down-regulating RAGE expression in ischemic rat brain after MCAO. Int J Clin Exp Pathol 2017;10(6):7232–7241.
22. Briyal S, Shah S, Gulati A. Neuroprotective and anti-apoptotic effects of liraglutide in the rat brain following focal cerebral ischemia. Neuroscience. 2014;28:269–281. doi:10.1016/j.neuroscience.2014.09.064
23. Deng C, Cao J, Han J, Li J, Li Z, Shi N. Liraglutide activates the Nrf2/HO-1 antioxidant pathway and protects brain nerve cells against cerebral ischemia in diabetic rats. Comput Intell Neurosci. 2018;2018:3094504. doi:10.1155/2018/3094504
24. Drucker DJ. Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology. 2002;122(2):531–544. doi:10.1053/gast.2002.31068
25. Аthаudа D. Thе gluсаgon-likе рерtidе-1 (GLР) rесерtor аs а thеrареutiс tаrgеt in раrkinson’s disеаsе: mесhаnisms of асtion. Drug Disсovery Todаy. 2016;21(5):802–818.
26. Тюренков И. Н., Бакулин Д. А., Куркин Д. В., Волотова Е. В. Нейропротективные свойства инкретиномиметиков при ишемии головного мозга и нейродегенеративных заболеваниях. Проблемы эндокринологии. 2017;63(1):58–67. doi:10.14341/probl201763158-67
27. Teramoto S, Miyamoto N, Yatomi K, Tanaka Y, Oishi H, Arai H et al. Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia. J Cerebral Blood Flow Metab. 2011;31(8):1696–1705. doi:10.1038/jcbfm.2011.51
28. Мudаliаr S. Еffесts оf inсrеtin hоrmоnеs оn bеtа-сеll mаss аnd funсtiоn, bodу wеight, аnd hераtiс аnd mуосаrdiаl funсtiоn. Am J Med. 2010;123(l):19–27.
29. Oeseburg H, de Boer RA, Buikema H, van der Harst P, van Gilst WH, Silljé HH. Glucagon-like peptide-1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A. Arterioscler Thromb Vasc Biol. 2010;30(7):1407–1414. doi:10.1161/ATVBAHA.110.206425
30. Goud A, Zhong J, Peters M, Brook RD, Rajagopalan S. GLP-1 agonists and blood pressure: a review of the evidence. Curr Hypertens Rep. 2016; 18(2):16. doi:10.1007/s11906-015-0621-6
31. Ribeiro-Silva JC, Tavares CAM, Girardi ACC. The blood pressure lowering effects of glucagon-like peptide-1 receptor agonists: A mini-review of the potential mechanisms. Curr Opin Pharmacol. 2023;69:102355. doi:10.1016/j.coph.2023.102355
32. Wang B, Zhong J, Lin H, Zhao Z, Yan Z, He H et al. Blood pressure-lowering effects of GLP-1 receptor agonists exenatide and liraglutide: a meta-analysis of clinical trials. Diabetes Obes Metab. 2013;15(8):737–749. doi:10.1111/dom.12085
33. Bharucha AE, Charkoudian N, Andrews CN, Camilleri M, Sletten D, Zinsmeister AR et al. Effects of glucagon-like peptide-1, yohimbine, and nitrergic modulation on sympathetic and parasympathetic activity in humans. Am J Physiol Regul Integr Comp Physiol. 2008;295(3):R874–R880. doi:10.1152/ajpregu.00153.2008
34. Fonseca VA, Devries JH, Henry RR, Donsmark M, Thomsen HF, Plutzky J. Reductions in systolic blood pressure with liraglutide in patients with type 2 diabetes: insights from a patient-level pooled analysis of six randomized clinical trials. J Diabetes Complications. 2014;28(3):399–405.
35. Zhang Q, Zhou S, Liu L. Efficacy and safety evaluation of SGLT2i on blood pressure control in patients with type 2 diabetes and hypertension: a new meta-analysis. Diabetol Metab Syndr. 2023;15(1):118. doi:10.1186/s13098-023-01092-z
36. Abdel-Latif RG, Rifaai RA, Amin EF. Empagliflozin alleviates neuronal apoptosis induced by cerebral ischemia/ reperfusion injury through HIF-1α/VEGF signaling pathway. Arch Pharm Res. 2020;43(5):514–525. doi:10.1007/s12272-020-01237-y
37. Al-Mudhafar AM, Abed FN, Abosaooda M, Al-Mudhafar RH, Hadi NR. Neuroprotective effect of empagliflozinon cerebral ischemia/reperfusion injury in rat model. Ann Romanian Society Cell Biol. 2021;4876–4887.
38. Wang MY, Yu X, Lee Y, McCorkle SK, Chen S, Li J et al. Dapagliflozin suppresses glucagon signaling in rodent models of diabetes. Proc Natl Acad Sci USA. 2017;114(25):6611–6616. doi:10.1073/pnas.1705845114
39. Poppe R, Karbach U, Gambaryan S, Wiesinger H, Lutzenburg M, Kraemer M et al. Expression of the Na+-D-glucose cotransporter SGLT1 in neurons. J Neurochem. 1997;69(1):84–94. doi:10.1046/j.1471-4159.1997.69010084.x
40. Koepsell H. Glucose transporters in brain in health and disease. Pflugers Arch. 2020;472(9):1299–1343. doi:10.1007/s00424-020-02441-x
41. Enerson BE, Drewes LR. The rat blood-brain barrier transcriptome. J Cereb Blood Flow Metab. 2006;26(7):959–973. doi:10.1038/sj.jcbfm.9600249
42. Nguyen T, Wen S, Gong M, Yuan X, Xu D, Wang C et al. Dapagliflozin activates neurons in the central nervous system and regulates cardiovascular activity by inhibiting SGLT-2 in mice. Diabetes Metab Syndr Obes. 2020;13:2781–2799. doi:10.2147/DMSO.S258593
43. Simanenkova AV, Fuks ОS, Timkina NV, Karonova TL, Tsyba DL, Kirik ОV et al. An experimental study of the neuroprotective effect of sodium-glucose cotransporter type 2 inhibitors. J Evolutionary Biochem Physiol. 2022;58(5):1540–1553. doi:10.1134/S0022093022050234
44. Song P, Onishi A, Koepsell H, Vallon V. Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin Ther Targets. 2016;20(9):1109–1125. doi:10.1517/14728222.2016.1168808
45. Zhou Y, Wu W. The sodium-glucose co-transporter 2 inhibitor, empagliflozin, protects against diabetic cardiomyopathy by inhibition of the endoplasmic reticulum stress pathway. Cell Physiol Biochem. 2017;41(6):2503–2512. doi:10.1159/000475942