Статья
АДИПОКИНЫ И КАРДИОМЕТАБОЛИЧЕСКИЙ СИНДРОМ
Ожирение является одной из наиболее важных проблем общественного здравоохранения XXI века. В настоящее время жировая ткань рассматривается как активный эндокринный орган, производящий гормоны — адипокины. Адипокины являются одними из регуляторов чувствительности к инсулину, оксидативного стресса, энергетического обмена, свертываемости крови и воспалительных реакций. Именно поэтому адипокины могут являться реализаторами механизма негативного действия ожирения на сердечно-сосудистую систему. Изучение их патофизиологической роли может сделать адипокины терапевтической мишенью в борьбе с ожирением и ассоциированных с ним состояний.
1. Alberti K.G.M.M., Eckel R.H., Grundy S.M. et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; And international association for the study of obesity // Circulation. — 2009. — Vol. 120, № 16. — P. 1640–1645.
2. Alberti K.G.M.M., Zimmet P. The metabolic syndrome — a new worldwide definition // Lancet. — 2005. — Vol. 366, № 9491. — P. 1059–1062.
3. Halberg N., Wernstedt-Asterholm I., Scherer P.E. The adipocyte as an endocrine cell // Endocrinol. Metab. Clin. North America. — 2008. — Vol. 37, № 3. — P. 753–768.
4. Hsieh C.J., Wang P.W., Chen T.Y. The relationship between regional abdominal fat distribution and both insulin resistance and
5. subclinical chronic inflammation in non-diabetic adults // Diabetol. Metab. Syndr. — 2014. — Vol. 6, № 1. — P. 49.
6. Saleem U., Khaleghi M., Morgenthaler N.G. et al. Plasma carboxy-terminal provasopressin (copeptin): a novel marker of insulin resistance and metabolic syndrome // J. Clin. Endocrinol. Metab. — 2009. — Vol. 94, № 7. — P. 2558–2564.
7. Tsimikas S., Willeit J., Knoflach M. et al. Lipoproteinassociated phospholipase A2 activity, ferritin levels, metabolic syndrome, and 10-year cardiovascular and non-cardiovascular mortality: results from the Bruneck study // Eur. Heart J. — 2009. — Vol. 30, № 1. — P. 107–115.
8. Jacobs M., Van Greevenbroek M.M.J., Van Der Kallen C.J.H. et al. Low-grade inflammation can partly explain the association between the metabolic syndrome and either coronary artery disease
9. or severity of peripheral arterial disease: the CODAM study // Eur. J. Clin. Invest. — 2009. — Vol. 39, № 6. — P. 437–444.
10. Cinti S., Mitchell G., Barbatelli G. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans // J. Lipid Res. — 2005. — Vol. 46, № 11. — P. 2347–2355.
11. Lau D.C.W., Dhillon B., Yan H. et al. Adipokines: molecular links between obesity and atheroslcerosis // Am. J. Physiol. Heart Circulat. Physiol. — 2005. — Vol. 288, № 5. — P. 2031–2041.
12. Trayhurn P., Wood I.S. Adipokines: inflammation and the pleiotropic role of white adipose tissue // Br. J. Nutr. — 2004. — Vol. 92, № 3. — P.347–355.
13. Kobayashi H., Ouchi N., Kihara S. et al. Selective sup-pression of endothelial cell apoptosis by the high molecular weight form of adiponectin // Circ. Res. — 2004. — Vol. 94, № 4. — P. 27–31.
14. Hirose H. Serum high-molecular-weight adiponectin as a marker for the evaluation and care of subjects with metabolic syndrome and related disorders // J. Atheroscl. Thromb. — 2010. — Vol. 17, № 12. — P. 1201–1211.
15. Беляева О.Д., Баженова Е.А., Березина А.В. и др. Уровень адипонектина, показатели липидного и углеводного обменов у пациентов с абдоминальным ожирением // Арте-
16. риальная гипертензия. — 2009. — Т. 15, № 3. — С. 309-313. / Belyaeva O.D., Bazhenova E.A., Berezina A.V. et al. Adiponectin levels, lipid and carbohydrate metabolism in patients with abdomi-
17. nal obesity // Arterial Hypertension. — 2009. — Vol. 15, № 3. — P. 309–313.
18. Wynne K., Stanley S., McGowan B. Appetite control // J. Endocrinol. — 2005. — Vol. 184, № 2. — P. 291–318.
19. Uotani S., Bjorbaek C., Tornoe J., Flier J.S. Functional properties of leptin receptor isoforms: internalization and degra dation of leptin and ligand-induced receptor downregulation // Diabetes. — 1999. — Vol. 48, № 2. — P. 279–286.
20. Gao S., Kinzig K.P., Aja S. et al. Leptin activates hypothalamic acetyl-Co Acarboxylase to inhibit food intake // Proc. Natl. Acad. Sci. USA. — 2007. — Vol. 104, № 44. — P. 17358–17363.
21. Hutley L., Prins J.B. Fat as an endocrine organ: relationship to the metabolic syndrome // Am. J. Med. Sci. — 2005. — Vol. 330, № 6. — P. 280–289.
22. Чубенко Е.А., Беляева О.Д., Беркович О.А. и др. Значение лептина в формировании метаболического синдрома // Проблемы женского здоровья. — 2010. — T. 5, № 1. — С. 45–56. /
23. Chubenko E.A., Belyaeva O.D., Berkovich O.A. et al. Meaning of leptin in the formation of the metabolic syndrome // Problems of Women’s Health. — 2010. — Vol. 5, № 1. — Р. 45–56.
24. Considine R.V., Sinha M.K., Heiman M.L. et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans // N. Engl. J. Med. — 1996. — Vol. 334, № 5. — P. 292–295.
25. Tschöp M., Wawarta R., Riepl R.L. et al. Post-prandial decrease of circulating human ghrelin levels // J. Endocrinol. Invest. — 2001. — Vol. 24, № 6. — P. 19–21.
26. Tschöp M., Weyer C., Tataranni P.A. et al. Circulating Ghrelin levels are decreased in human obesity // Diabetes. — 2001. — Vol. 50, № 4. — P. 707–709.
27. Stepien M., Rosniak-Bak K., Paradowski M. et al. Waist circumference, ghrelin and selected adipose tissue-derived adipokines as predictors of insulin resistance in obese patients: preliminary results // Med. Sci. Monit. — 2011. — Vol. 17, № 11. — P. 13–18.
28. Cowley M.A., Smith R.G., Diano S. et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis // Neuron. — 2003. — Vol. 37, № 4. — P. 649–661.
29. Oliver P., Picó C., Serra F. et al. Resistin expression in different adipose tissue depots during rat development // Mol. Cell Biochem. — 2003. — Vol. 252, № 1–2. — P. 397–400.
30. Patel L., Buckels A.C., Kinghorn I.J. et al. Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators // Biochem. Biophys. Res. Commun. — 2003. — Vol. 300, № 2. — P. 472–476.
31. Savage D.B., Sewter C.P., Klenk E.S. et al. S. Resistin / Fizz3 expression in relation to obesity and peroxisome proliferatoractivated receptor-gamma action in humans // Diabetes. — 2001. — Vol. 50, № 10. — P. 2199–2202.
32. Lee J.H., Chan J.L., Yiannakouris N. et al. Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulinresistant, and diabetic subjects // J. Clin. Endocrinol. Metab. — 2003. — Vol. 88, № 10. — P. 4848–4856.
33. Jain S.H., Massaro J.M., Hoffmann U. et al. Cross-sectional associations between abdominal and thoracic adipose tissue compartments and adiponectin and resistin in the Framingham Heart Study // Diabetes Care. — 2009. — Vol. 32, № 5. — P. 903–908.
34. Berndt J., Kloting N., Kralisch S. et al. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans // Diabetes. — 2005. — Vol. 54, № 10. — P. 2911–2916.
35. Curat C.A., Wegner V., Sengen`es C. et al. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin // Diabetologia. — 2006. — Vol. 49, № 4. — P. 744–747.
36. Pagano C., Pilon C., Olivieri M. et al. Reduced plasma visfatin/pre-B cell colony-enhancing factor in obesity is not related to insulin resistance in humans // J. Clin. Endocrinol. Metab. — 2006. — Vol. 91, № 8. — P. 3165–3170.
37. Haider D.G., Holzer G., Schaller G. et al. The adipokine visfatin is markedly elevated in obese children // J. Pediatr. Gastroenterol. Nutr. — 2006. — Vol. 43, № 4. — P. 548–549.
38. Zahorska-Markiewicz B., Olszanecka-Glinianowicz M., Janowska J. et al. Serum concentration of visfatin in obese women // Metabolism. — 2007. — Vol. 56, № 8. — P. 1131–1134.
39. Jin H., Jiang B., Tang J. et al. Serum visfatin concentrations in obese adolescents and its correlation with age and high-density lipoprotein cholesterol // Diabetes Res. Clin Pract. — 2008. — Vol. 79, № 3. — P. 412–418.
40. Michalska M., Iwan-Ziętek I., Gniłka W. PAI-1 and α2-AP in patients with morbid obesity // Adv. Clin. Exp. Med. — 2013. — Vol. 22, № 6. — P. 801–807.
41. Natali A., Toschi E., Baldeweg S. et al. Clustering of insulin resistance with vascular dysfunction and low-grade inflammation in type 2 diabetes // Diabetes. — 2006. — Vol. 55, № 4. — P. 1133–1140.
42. Ma L.J., Mao S.L., Taylor K.L. et al. Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1 // Diabetes. — 2004. — Vol. 53, № 2. — P. 336–346.
43. Schaefer K., Fujisawa K., Konstantinides S., Loskutoff D.J. Disruption of the plasminogen activator inhibitor 1 gene reduces the adiposity and improves the metabolic profile of genetically obese and diabetic ob/ob mice // FASEB J. — 2001. — Vol. 15, № 10. — P. 1840–1842.
44. Eckel R.H., Grundy S.M., Zimmet P.Z. The metabolic syndrome // Lancet. — 2005. — Vol. 365, № 9468. — P. 1415–1428.
45. Ianniello F., Quagliozzi L., Caruso A., Paradisi G. Low adiponectin in overweight/obese women:association with diabetes during pregnancy // Eur. Rev. Med. Pharmacol. Sci. — 2013. — Vol. 17, № 23. — P. 3197–3205.
46. Mojiminiyi O.A., Abdella N.A. Associations of resistin with inflammation and insulin resistance in patients with type 2 diabetes mellitus // Scand. J. Clin. Lab. Invest. — 2007. — Vol. 67, № 2. — P. 215–225.
47. Monteiro M.P. Anti-ghrelin vaccine for obesity: a feasible alternative to dieting? // Expert Rev. Vaccines. — 2011. — Vol. 10, № 10. — P. 1363–1365.
48. Gauna C., Meyler F.M., Janssen J.A. et al. Administration of acylated ghrelin reduces insulin sensitivity, whereas the combination of acylated plus unacylated ghrelin strongly improves insulin sensitivity // J. Clin. Endocrinol. Metab. — 2004. — Vol. 89, № 10. — P. 5035–5042.
49. Broglio F., Prodam F., Riganti F. et al. The continuous infusion of acylated ghrelin enhances growth hormone secretion and worsens glucose metabolism in humans // J. Endocrinol. Invest. — 2008. — Vol. 31, № 9. — P. 788–794.
50. Steppan C.M., Bailey S.T., Bhat S. The hormone resistin links obesity to diabetes // Nature. — 2001. — Vol. 409, № 6818. — P. 307–312.
51. Walcher D., Hess K., Berger R. et al. Resistin: a newly identified chemokine for humanCD4-positivelymphocytes // Cardiovasc. Res. — 2010. — Vol. 85, № 1. — P. 167–174.
52. Morash B.A., Willkinson D., Ur E. et al. Resistin expression and regulation in mouse pituitary // FEBS Lett. — 2002. — Vol. 526, № 1–3. — P. 26–30.
53. Qatanani M., Szwergold N.R., Greaves D.R. et al. Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice // J. Clin. Invest. — 2009. — Vol. 119, № 3. — P. 531–539.
54. Chen B.H., Song Y., Ding E.L. et al. Circulating levels of resistin and risk of type 2 diabetes in men and women: results from two prospective cohorts // Diabetes Care. — 2009. — Vol. 32, № 2. — P. 329–334.
55. Schwartz D.R., Lazar M.A. Human resistin: found in translation from mouse to man // Trends Endocrinol. Metab. — 2011. — Vol. 22, № 7. — P. 259–265.
56. Fukuhara A., Matsuda M., Nishizawa M. et al. Visfatin: a protein secreted by visceral fat that Mimics the effects of insulin // Science. — 2005. — Vol. 307, № 5708. — P. 426–430.
57. Fukuhara A., Matsuda M., Nishizawa M. et al. Retraction // Science. — 2007. — Vol. 318, № 5850. — P. 565.
58. Brown J.E., Onyango D.J., Ramanjaneya M. et al. Visfatin regulates insulin secretion, insulin receptor signalling and mRNA expression of diabetes-related genes in mouse pancreatic β-cells // J. Mol. Endocrinol. — 2010. — Vol. 44, № 3. — P. 171–178.
59. Cheng Q., Dong W., Qian L. et al. Visfatin inhibits apoptosis of pancreatic β-cell line, MIN6, via the mitogen-activated protein kinase/phosphoinositide 3-kinase pathway // J. Mol. Endocrinol. — 2011. — Vol. 47, № 1. — P. 13–21.
60. Festa A., D’Agostino R. Jr., Mykkänen L. et al. Relative contribution of insulin and its precursors to fibrinogen and PAI-1 in a large population with different states of glucose tolerance // Arterioscler. Thromb. Vasc. Biol. — 1999. — Vol. 19, № 3. —
61. P. 562–568.
62. Festa A., Williams K., Tracy R.P. et al. Progression of plasminogen activator inhibitor-1 and fibrinogen levels in relation to incident type 2 diabetes // Circulation. — 2006. — Vol. 113, № 14. — P. 1753–1759.
63. Landsberg L., Aronne L.J., Beilin L.J. et al. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment: a position paper of The Obesity Society and the American Society
64. of Hypertension // J. Clin. Hypertens. (Greenwich). — 2013. — Vol. 15, № 1. — P. 14–33.
65. Kazumi T., Kawaguchi A., Sakai K. et al. Young men with high-normal blood pressure have lower serum adiponectin, smaller LDL size, and higher elevated heart rate than those with optimal blood pressure // Diabetes Care. — 2002. — Vol. 25, № 6. — P. 971–976.
66. Allison M.A., Ix J.H., Morgan C. et al. Higher leptin is associated with hypertension: the Multi-Ethnic Study of Athero-sclerosis // J. Hum. Hypertens. — 2013. — Vol. 27, № 10. — P. 617–622.
67. Vadacca M. Leptin, adiponectin and vascular stiffness parameters in women with systemic lupus erythematosus // Intern. Emerg. Med. — 2013. — Vol. 8, № 8. — P. 705–712.
68. Carlyle M., Jones O.B., Kuo J.J. et al. Chronic cardiovascular and renal actions of leptin: role of adrenergic activity // Hypertension. — 2002. — Vol. 39, № 2. — P. 496–501.
69. Eikelis N., Schlaich M., Aggarwal A. et. al. Interactions between leptin and the human sympathetic nervous system // Hypertension. — 2003. — Vol. 41, № 5. — P. 1072–1079.
70. Shirasaka T., Takasaki M., Kannan H. Cardiovascular effects of leptin and orexins // Am. J. Physiol.-Regulatory Integrative Comparative Physiol. — 2003. — Vol. 284, № 3. — P. 639–651.
71. Singhal A., Farooqi I.S., Cole T.J. et al. Influence of leptin on arterial distensibility: a novel link between obesity and cardiovascular disease? // Circulation. — 2002. — Vol. 106, № 15. —
72. P. 1919–1924.
73. Matsumura K., Tsuchihashi T., Fujii K., Abe I., Iida M. Central ghrelin modulates sympathetic activity in conscious rabbits // Hypertension. — 2002. — Vol. 40, № 5. — P. 694–699.
74. Iglesias M.J., Pineiro R., Blanco M. et al. Growth hormone releasing peptide (ghrelin) is synthesized and secreted by cardiomyocytes // Cardiovasc. Res. — 2004. — Vol. 62, № 3. — P. 481–488.
75. Rodrıguez A., Gomez-Ambrosi J., Catalan V. et al. Association of plasma acylated ghrelin with blood pressure and left ventricular mass in patients with metabolic syndrome // J. Hypertens. — 2010. — Vol. 28, № 3. — P. 560–567.
76. Ukkola O., Paakko T., Kesaniemi Y.A. Ghrelin and its promoter variant associated with cardiac hypertrophy // J. Hum. Hypertens. — 2012. — Vol. 26, № 7. — P. 452–457.
77. Vallejo S., Romacho T., Angulo J. et al. Visfatin impairs endothelium-dependent relaxation in rat and human mesenteric microvessels through nicotinamide phosphoribosyltransferase activity // PLoS One. — 2011. — Vol. 6, № 11. — e27299.
78. Zhang L., Curhan G.C., Forman J.P. Plasma resistin levels associate with risk for hypertension among nondiabetic women // J. Am. Soc. Nephrol. — 2010. — Vol. 21, № 7. — P. 1185–1191.
79. Smits M.M., Woudstra P., Utzschneider K.M. et al. Adipocytokines as features of the metabolic syndrome determined using confirmatory factor analysis // Ann. Epidemiol. — 2013. — Vol. 23,
80. № 7. — P. 415–421.
81. Karasek D., Vaverkova H., Halenka M. et al. Prehypertension in dyslipidemic individuals; relationship to metabolic parameters and intima-media thickness // Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. — 2013. — Vol. 157, № 1. — P. 41–49.
82. Sakamoto M., Suzuki H., Hayashi T. et al. Effects of candesartan in hypertensive patients with type 2 diabetes mellitus on inflammatory parameters and their relationship to pulse pressure // Cardiovasc. Diabetol. — 2012. — Vol. 11. — P. 118.
83. Kim K.N., Kim K.M., Kim B.T. et al. Relationship of plasminogen activator inhibitor 1 gene 4G/5G polymorphisms to hypertension in Korean women // Chin. Med. J. (Engl). — 2012. — Vol. 125, № 7. — P. 1249–1253.
84. Matsuzawa Y., Funahashi T., Kihara S. et al. Adiponectin and metabolic syndrome // Arterioscl. Thromb. Vasc. Biol. — 2004. — Vol. 24, № 1. — P. 29–33.
85. Xydakis A.M., Case C.C., Jones P.H. et al. Adiponectin, inflammation, and the expression of the metabolic syndrome in obese individuals: the impact of rapid weight lose through caloric restriction // J. Clin. Endocrinol. Metab. — 2004. — Vol. 89, № 6. — P. 2697–2703.
86. Lee H.-S., Lee M., Joung H. Adiponectin represents an independent risk factor for hypertension in middle aged Korean women // Asia Pacific J. Clin. Nutrition. — 2007. — Vol. 16, № 1. — P. 10–15.
87. Pala L., Monami M., Ciani S. et al. Adipokines as possible new predictors of cardiovascular diseases: a case control study // J. Nutr. Metab. — 2012. — Vol. 2012. — Р. 253428. — doi: 10.1155/2012/253428
88. Wu Z.J., Cheng Y.J., Gu W.J., Aung L.H. Adiponectin is associated with increased mortality in patients with already established cardiovascular disease: A systematic review and metaanalysis // Metab. Clin. Experiment. — 2014. — Vol. 63, № 9. — P. 1157–1166.
89. Cooke J.P., Oka R.K. Does leptin cause vascular disease? // Circulation. — 2002. — Vol. 106, № 15. — P. 1904–1905.81. Park H.Y., Kwon H.M., Lim H.J. et al. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro // Exp. Mol. Med. — 2001. — Vol. 33, № 2. — P. 95–102.
90. Artwohl M., Roden M., Holzenbein T. et al. Modulation by leptin of proliferation and apoptosis in vascular endothelial cells // Int. J. Obes. Relat. Metab. Disord. — 2002. — Vol. 26, № 4. — P. 577–580.
91. O’Rourke L., Gronning L.M., Yeaman S.J., Shepherd P.R. Glucose-dependent regulation of cholesterol ester metabolism in macrophages by insulin and leptin // J. Biol. Chem. — 2002. — Vol. 277, № 45. — P. 42557–42562.
92. Sierra-Honigmann M.R., Nath A.K., Murakami C. et al. Biological action of leptin as an angiogenic factor // Science. — 1998. — Vol. 281, № 5383. — P. 1683–1386.
93. Van Dielen F.M.H., Van’t Veer C., Schols A.M. et al. Increased leptin concentrations correlate with increased concentrations of inflammatory markers in morbidly obese individuals // Intern. J. Obes. — 2001. — Vol. 25, № 12. — P. 1759–1766.
94. Konstantinides S., Schafer K., Koschnick S., Loskutoff D.J. Leptin-dependent platelet aggregation and arterial thrombosis suggests a mechanism for atherothrombotic disease in obesity // J. Clin. Invest. — 2001. — Vol. 108, № 10. — P. 1533–1540.
95. Tesauro M., Schinzari F., Iantorno M. et al. Ghrelin improves endothelial function in patients with metabolic syndrome // Circulation. — 2005. — Vol. 112, № 19. — P. 2986–2992.
96. Li W.G., Gavrila D., Liu X. et al. Ghrelin inhibits proinflammatory responses and nuclear factor-kappaB activation in human endothelial cells // Circulation. — 2004. — Vol. 109, № 18. — P. 2221–2226.
97. Kawanami D., Maemura K., Takeda N. et al. Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine-endothelial cell interactions // Biochem. Biophys. Res. Commun. — 2004. — Vol. 314, № 2. — P. 415–419.
98. Lee T.S., Lin C.Y., Tsai J.Y. et al. Resistin increases lipid accumulation by affecting class A scavenger receptor, CD36 and ATP-binding cassette transporter-A1 in macrophages // Life Sci. — 2009. — Vol. 84, № 3–4. — P. 97–104.
99. Piestrzeniewicz K., Łuczak K., Komorowski J. et al. Resistin increases with obesity and atherosclerotic risk factors in patients with myocardial infarction // Metabolism. — 2008. — Vol. 57,
100. № 4. — P. 488–493.
101. Choi H.Y., Kim S., Yang S.J. et al. Association of adiponectin, resistin, and vascular inflammation: analysis with 18F-fluorodeoxyglucose positron emission tomography // Arterioscler. Thromb. Vasc. Biol. — 2011. — Vol. 31, № 4. — P. 944–949.
102. Reilly M.P., Lehrke M., Wolfe M.L. et al. Resistin is an inflammatory marker of atherosclerosis in humans // Circulation. — 2005. — Vol. 111, № 7. — P. 932–939.
103. Ohmori R., Momiyama Y., Kato R. et al. Associations between serum resistin levels and insulin resistance, inflammation, and coronary artery disease // J. Am. Coll. Cardiol. — 2005. — Vol. 46, № 2. — P. 379–380.
104. Wang H., Chen D.Y., Cao J. et al. High serum resistin level may be an indicator of the severity of coronary disease in acute coronary syndrome // Chin. Med. Sci. J. — 2009. — Vol. 24, № 3. — P. 161–166.
105. On Y.K., Park H.K., Hyon M.S., Jeon E.S. Serum resistin as a biological marker for coronary artery disease and restenosis in type 2 diabetic patients // Circ. J. — 2007. — Vol. 71, № 6. — P. 868–873.
106. Krecki R., Krzeminska-Pakula M., Peruga J.Z. et al. Elevated resistin opposed to adiponectin or angiogenin plasma levels as a strong, independent predictive factor for the occurrence of major
107. adverse cardiac and cerebrovascular events in patients with stable multivessel coronary artery disease over 1-year follow-up // Med. Sci. Monit. — 2011. — Vol. 17, № 1. — P. 26–32.
108. Momiyama Y., Ohmori R., Uto-Kondo H. et al. Serum resistin levels and cardiovascular events in patients undergoing percutaneous coronary intervention // J. Atheroscler. Thromb. — 2011. — Vol. 18, № 2. — P. 108–114.
109. Cabrera de León A., Almeida González D., González Hernández A. et al. The association of resistin with coronary disease in the general population // J. Atheroscler. Thromb. — 2014. — Vol. 21, № 3. — P. 273–281.
110. Vanhoutte P.M. Endothelial dysfunction: the first step toward coronary arteriosclerosis // Circul. J. — 2009. — Vol. 73, № 4. — P. 595–601.
111. Kong Q.X., Xia M., Liang R.Q. et al. Increased serum visfatin as a risk factor for atherosclerosis in patients with ischaemic cerebrovascular disease // Singapore Med. J. — 2014. — Vol. 55, № 7. — P. 383–387.
112. Dahl T.B., Yndestad A., Skjelland M. et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization // Circulation. — 2007. — Vol. 115, № 8. — P. 972–980.
113. Kim S.R., Bae S.K., Choi K.S. et al. Visfatin promotes angiogenesis by activation of extracellular signal-regulated kinase ½ // Biochem. Biophys. Res. Communications. — 2007. — Vol. 357, № 1. — P. 150–156.
114. Xiao J., Xiao Z.J., Liu Z.G. et al. Involvement of dimethylarginine dimethylaminohydrolase-2 in visfatin-enhanced angiogenic function of endothelial cells // Diabetes/Metab. Res. Rev. — 2009. — Vol. 25, № 3. — P. 242–249.
115. Moulton K.S. Angiogenesis in atherosclerosis: gathering evidence beyond speculation // Curr. Opin. Lipidol. — 2006. — Vol. 17, № 5. — P. 548–555.
116. Moschen A.R., Kaser A., Enrich B. et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties // J. Immunol. — 2007. — Vol. 178, № 3. — P. 1748–1758.
117. Kohler H.P., Grant P.J. Plasminogen-activator inhibitor type 1 and coronary artery disease // N. Engl. J. Med. — 2000. — Vol. 342, № 24. — P. 1792–1801.
118. Schneiderman J., Sawdey M.S., Keeton M.R. et al. Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries // Proc. Natl. Acad. Sci. U S A. — 1992. — Vol. 89, № 15. — P. 6998–7002.
119. DePaoli A.M. 20 years of leptin: leptin in common obesity and associated disorders of metabolism // J. Endocrinol. — 2014. — Vol. 223, № 1. — P. 71–81.
120. Amylin Pharmaceuticals, Inc. Takeda Pharmaceutical Company Limited Amylin and Takeda Discontinue Development of Pramlintide/Metreleptin Combination Treatment for Obesity Following Commercial Reassessment of the Program // Newsroom. — July-September, 2011.
121. Okada-Iwabu M., Yamauchi T., Iwabu M. et al. A smallmolecule AdipoR agonist for type 2 diabetes and short life in obesity // Nature. — 2013. — Vol. 503, № 7477. — P. 493–499.
122. Lu S.C., Xu J., Chinookoswong N. et al. An acyl-ghrelin-specific neutralizing antibody inhibits the acute ghrelin-mediated orexigenic effects in mice // Mol. Pharmacol. — 2009. — Vol. 75, № 4. — P. 901–907.
123. Mayorov A.V., Amara N., Chang J.Y. et al. Catalytic antibody degradation of ghrelin increases whole-body metabolic rate and reduces refeeding in fasting mice // Proc. Natl Acad. Sci. USA. — 2008. — Vol. 105, № 45. — P. 17487–17492.
124. Nagaya N., Moriya J., Yasumura Y. et al. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure // Circulation. — 2004. — Vol. 110, № 24. — P. 3674–3679.
125. Cummings D.E., Weigle D.S., Frayo R.S. et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery // N. Engl. J. Med. — 2002. — Vol. 346, № 21. — P. 1623–1630.
126. Alfadda A.A. Circulating adipokines in healthy versus unhealthy overweight and obese subjects // Int. J. Endocrinol. — 2014. — Vol. 2014. — Р. 170434. — doi: 10.1155/2014/170434
127. Aguilar-Salinas C., García E., Robles L. et al. High adiponectin concentrations are associated with the metabolically healthy obese phenotype // J. Clin. Endocrinol. Metab. — 2008. — Vol. 93, № 10. — P. 4075–4079.
128. Karelis A.D. Metabolically healthy but obese individuals // Lancet. — 2008. — Vol. 372, № 9646. — P. 1281–1283.