Статья
Электроанатомическое биполярное картирование для выявления аритмогенного субстрата при катетерной аблации фибрилляции предсердий
Приводятся данные по сопоставлению результатов магнитно-резонансной томографии с отсроченным контрастированием гадолиния и биполярного картирования, представлены результаты исследований по использованию данных биполярного картирования для модификации субстрата при катетерной аблации фибрилляции предсердий, а также обозначены перспективы развития метода.
1. Kottkamp H. Fibrotic atrial cardiomyopathy: a specific disease/syndrome supplying substrates for atrial fibrillation, atrial tachycardia, sinus node disease, AV node disease, and thromboembolic complications. J. Cardiovasc. Electrophysiol., 2012; 23(7): 797-799.
2. Gal P., Marrouche N.F. Magnetic resonance imaging of atrial fibrosis: redefining atrial fibrillation to a syndrome. Eur. Heart J., 2017; 38: 14-19.
3. Piorkowski C., Hindricks G., Schreiber D. et al. Electroanatomic reconstruction of the left atrium, pulmonary veins, and esophagus compared with the “true anatomy” on multislice computed tomography in patients undergoing catheter ablation of atrial fibrillation. Heart Rhythm, 2006; 3(3): 317-327.
4. Оршанская В.С., Каменев А.В., Белякова Л.А. и др. Электроанатомический субстрат левого предсердия и его прогностическая ценность при определении риска рецидива фибрилляции предсердий после циркулярной изоляции легочных вен. Результаты проспективного исследования. Российский кардиологический журнал, 2017; 8: 82-89 https://doi.org/10.15829/15604071-2017-8-82-89
5. Allessie M., Ausma J., Schotten U. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc. Res. 2002; 54(2): 230-246.
6. Yaksh A., Kik C., Knops P., Roos-Hesselink J.W. et al. Atrial fibrillation: to map or not to map? Neth. Heart. J., 2014; 22(6): 259-266.
7. Boldt A., Wetzel U., Lauschke J. et al. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart, 2004; 90: 400-405.
8. Zlochiver S., Munoz V., Vikstrom K.L. et al. Electrotonic myofibroblast-to-myocyte coupling increases propensity to reentrant arrhythmias in two-dimensional cardiac monolayers. Biophys. J., 2008; 95: 4469-4480.
9. Callans D., Ren J.F., Michele J. et al. Electroanatomic left ventricular mapping in the porcine model of healed anterior myocardial infarction. Correlation with intracardiac echocardiography and pathological analysis. Circulation, 1999; 100: 1744-1750.
10. Mahnkopf C., Badger T.J., Burgon N.S. et al. Evaluation of the left atrial substrate in patients with lone atrial fibrillation using delayed-enhanced MRI: implications for disease progression and response to catheter ablation. Heart Rhythm, 2010; 7: 1475-1481.
11. Апарина О.П., Стукалова О.В., Миронова Н.А., Голицын С.П. Современные возможности изучения структурного ремоделирования предсердий при помощи магнитно-резонансной томографии с отсроченным контрастированием. Вестник аритмологии, 2014; 77: 57-63
12. Sanders P., Morton J.B., Davidson N.C. et al. Electrical remodeling of the atria in congestive heart failure: electrophysiological and electroanatomic mapping in humans. Circulation, 2003; 108: 1461-1468.
13. Sanders P., Morton J.B., Kistler P.M. et al. Electrophysiological and electroanatomic characterization of the atria in sinus node disease: evidence of diffuse atrial remodeling. Circulation, 2004; 109: 1514-1522.
14. Verma A., Wazni O. M., Marrouche N.F. et al. Pre-existent left atrial scarring in patients undergoing pulmonary vein antrum isolation: an independent predictor of procedural failure. J. Am. Coll. Cardiol., 2005; 45 (2): 285-92.
15. Marchlinski F.E., Callans D.J., Gottlieb C.D., Zado E. Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation, 2000; 101: 1288-1296.
16. Stiles M.K., John B., Wong C.X., et al. Paroxysmal lone atrial fibrillation is associated with an abnormal atrial substrate: Characterizing the “second factor.” J. Am. Coll. Cardiol., 2009; 53: 1182-1191.
17. Kuklik P., Szumowski L., Zebrowski J.J., Walczak F. The reconstruction, from a set of points, and analysis of the interior surface of the heart chamber. Physiological Measurement, 2004; 25: 617-627.
18. Сапельников О.В., Шувалова Ю.А., Черкашин Д.И. и др. Вольтажное картирование, как способ оценки фиброза левого предсердия. Средне-отдаленные результаты первой операции антральной изоляции легочных вен: пилотное исследование. Медицинский альманах, 2016; 4: 56-59
19. Sim I., Bishop M., O’Neill M., Williams S.E. Left atrial voltage mapping: defining and targeting the atrial fibrillation substrate. J. Interv. Card. Electrophysiol., 2019; 56(3): 213-227.
20. Oakes R.S., Badger T.J., Kholmovski E.G. et al. Detection and Quantification of Left Atrial Structural Remodeling With Delayed-Enhancement Magnetic Resonance Imaging in Patients with Atrial Fibrillation. Circulation, 2009; 119: 1758-1767.
21. Kapa S., Desjardins B., Callans D.J. et al. Contact electroanatomic mapping derived voltage criteria for characterizing left atrial scar in patients undergoing ablation for atrial fibrillation. J. Cardiovasc. Electrophysiol., 2014; 25: 1044-1052.
22. Akoum N., Daccarett M., McGann C. et al. Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation: A DE-MRI guided approach. J. Cardiovasc. Electrophysiol., 2011; 22: 16-22.
23. Spragg D.D., Khurram I., Zimmerman S.L. et al. Initial experience with magnetic resonance imaging of atrial scar and co-registration with electroanatomic voltage mapping during atrial fibrillation: Success and limitations. Heart Rhythm, 2012; 9: 2003-2009.
24. McGann C., Akoum N., Patel A. et al. Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI. Circ. Arrhythm. Electrophysiol., 2014; 7: 23-30.
25. Marrouche N.F., Wilber D., Hindricks G. et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation. The DECAAF study. JAMA, 2014; 311(5): 498-506.
26. Anter E., Tschabrunn C.M., Josephson M.E. High-resolution mapping of scar-related atrial arrhythmias using smaller electrodes with closer interelectrode spacing. Circ. Arrhythm. Electrophysiol. 2015; 8: 537-545.
27. Mastrine L., Greenberg Y.J., Uang F. et al. Utilization of the PentaRay NAV catheter during atrial fibrillation ablations. EP Lab Digest, 2014; 14.
28. Tschabrunn C.M., Roujol S., Dorman N.C. et al. High-resolution mapping of ventricular scar: comparison between single and multi-electrode catheters. Circ. Arrhythm. Electrophysiol., 2016; 9: e003841.
29. Khurram I.M., Beinart R., Zipunnikov V. et al. Magnetic resonance image intensity ratio, a normalized measure to enable interpatient comparability of left atrial fibrosis. Heart Rhythm., 2014; 11: 85-92.
30. Zghaib T., Keramati A., Chrispin J. et al. Multimodal examination of atrial fibrillation substrate: correlation of left atrial bipolar voltage using multi-electrode fast automated mapping, point-by-point mapping, and magnetic resonance image intensity ratio. JACC Clin. Electrophysiol., 2018;4(1): 59-68.
31. Rolf S., Kircher S., Arya A. et al. Tailored atrial substrate modification based on low-voltage areas in catheter ablation of atrial fibrillation. Circ. Arrhythm. Electrophysiol., 2014; 7(5): 825-33.
32. Kottkamp H., Berg J., Bender R. et al. Box isolation of fibrotic areas (BIFA): A patient-tailored substrate modification approach for ablation of atrial fibrillation. J Cardiovasc Electrophysiol., 2016; 27(1):22-30.
33. Jadidi A. S., Lehrmann H., Keyl С. et al. Ablation of persistent atrial fibrillation targeting low-voltage areas with selective activation characteristics. Circ. Arrhythm. Electrophysiol., 2016; 9 (3): 9-11.
34. Cutler M. J., Johnson J., Abozguia K. et al. Impact of voltage mapping to guide whether to perform ablation of the posterior wall in patients with persistent atrial fibrillation. J. Cardiovasc. Electrophysiol., 2016; 27(1): 13-21.
35. Schreiber D., Rieger A., Moser F., Kottkamp H. Catheter ablation of atrial fibrillation with box isolation of fibrotic areas: Lessons on fibrosis distribution and extent, clinical characteristics, and their impact on long-term outcome. J. Cardiovasc. Electrophysiol., 2017; 28(9): 971-83.
36. Yamaguchi T., Tsuchiya T., Nakahara S., et al. Efficacy of left atrial voltage-based catheter ablation of persistent atrial fibrillation. J. Cardiovasc. Electrophysiol., 2016; 27(9): 1055-1063.
37. Yang G., Yang B., Wei Y. et al. Catheter ablation of nonparoxysmal atrial fibrillation using electrophysiologically guided substrate modification during sinus rhythm after pulmonary vein isolation. Circ. Arrhythm. Electrophysiol., 2016; 9(2):1-11.
38. Blandino, A., Bianchi, F., Grossi, S., et al. Left atrial substrate modification targeting low-voltage areas for catheter ablation of atrial fibrillation: A systematic review and meta-analysis. Pacing. Clin. Electrophysiol., 2017; 40(2): 199-212.
39. Kircher S., Arya A., Altmann D. et al. Individually tailored vs. standardized substrate modification during radiofrequency catheter ablation for atrial fibrillation: a randomized study. Europace, 2018; 20(11): 1766-1775.
40. Boyle P.M., Zahid S., Trayanova N.A. Towards personalized computational modelling of the fibrotic substrate for atrial arrhythmia. Europace, 2016;18 (suppl 4): iv136iv145.
41. Hansen B.J., Zhao J., Fedorov V.V. Fibrosis and Atrial Fibrillation: Computerized and Optical Mapping; A View into the Human Atria at Submillimeter Resolution. JACC Clin. Electrophysiol., 2017; 3(6): 531-546.
42. HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. By: Calkins H, Hindricks G, Cappato R. et al. Group Author(s): EHRA; AHA; Soc Latinoamer Estimulacion et al. EUROPACE, 2018; 20 (1): E1-E160.