Статья
Легочная гипертензия и дисфункция правого желудочка – предикторы тяжелого течения коронавирусной инфекции
Новая коронавирусная инфекция (COVID-19) — заболевание, протекающее с многообразными клиническими проявлениями, тяжесть которого может варьировать от малосимптомного и бессимптомного течения до крайне тяжелого. На данном этапе актуальной задачей является раннее выявление надежных маркеров тяжести течения процесса в остром периоде COVID-19 и возможных в постковидный период обусловливающих симптомы изменений. Тяжелое течение коронавирусной инфекции ассоциировано с обширным повреждением легких, сосудов легких и сердечно-сосудистой патологией. В связи с этим естественным представляется изучение проблемы формирования легочной гипертензии (ЛГ) и дисфункции правого желудочка (ДПЖ) у больных COVID-19, и их значимости для оценки тяжести состояния и прогноза. Немаловажным для практической деятельности является и доступность диагностики с применением неинвазивных методов исследования, и достоверность данных, полученных при их применении. В настоящем обзоре представлены данные о частоте встречаемости ЛГ и ДПЖ и их потенциальной значимости у больных с COVID-19. Нами проведен анализ литературных источников в научных библиотеках eLIBRARY, PubMed/MEDLINE, ScienseDirect, ProQuest.
1. WHO. Novel Coronavirus. Situation Report — 205, 2020;205(6):1-19. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf.
2. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506. doi:10.1016/S0140-6736(20)30183-5.
3. World Health Organization Press Conference. The World Health Organization (WHO) Has Officially Named the Disease Caused by the Novel Coronavirus as COVID-19. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technicalguidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it (accessed on 11 March 2020).
4. Sulica R, Cefali F, Motschwiller C, et al. COVID-19 in Pulmonary Artery Hypertension (PAH) Patients: Observations from a Large PAH Center in New York City. Diagnostics. 2021;11(1):128. doi:10.3390/diagnostics11010128.
5. Humbert M, Kovacs G, Hoeper M, et al. ESC/ERS Scientific Document Group, 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: Developed by the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Endorsed by the International Society for Heart and Lung Transplantation (ISHLT) and the European Reference Network on rare respiratory diseases (ERN-LUNG). European Heart Journal. 2022;43(38):3618-731. doi:10.1093/eurheartj/ehac237.
6. Simonneau G, Montani D, Celermajer DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53:1801913. doi:10.1183/13993003.01913-2018.
7. Авдеев С. Н., Барбараш О. Л., Баутин А.Е. и др. Легочная гипертензия, в том числе хроническая тромбоэмболическая легочная гипертензия. Клинические рекомендации 2020. Российский кардиологический журнал. 2021;26(12):4683 doi:10.15829/1560-4071-2021-4683.
8. Galiè N, Humbert M, Vachiery JL, et al. ESC Scientific Document Group. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;1;37(1):67-119. doi:10.1093/eurheartj/ehv317.
9. Galiè N, Humbert M, Vachiery J, и др. Рекомендации ESC/ERS по диагностике и лечению легочной гипертензии 2015. Российский кардиологический журнал. 2016;(5):5-64. doi:10.15829/1560-4071-2016-5-5-64.
10. Finkelhor RS, Lewis SA, Pillai D. Limitations and Strengths of Doppler/Echo Pulmonary Artery Systolic Pressure–Right Heart Catheterization Correlations: A Systematic Literature Review. Echocardiography. 2015;32:10-8. doi:org/10.1111/echo.12594.
11. Del Rio JM, Grecu L, Nicoara A. Right Ventricular Function in Left Heart Disease. Seminars in Cardiothoracic and Vascular Anesthesia. 2019;23(1):88-107. doi:10.1177/1089253218799345.
12. Konstam MA, Kiernan MS, Bernstein D, et al. Evaluation and management of right-sided heart failure: a scientific statement from the American Heart Association. Circulation. 2018;137:e578-e622. doi:10.1161/CIR.0000000000000560.
13. Tsipis A, Petropoulou E. Echocardiography in the Evaluation of the Right Heart, US Cardiology Review 2022;16:e08. doi:10.15420/usc.2021.03.
14. Pagnesi M, Baldetti L, Beneduce A, et al. Pulmonary hypertension and right ventricular involvement in hospitalised patients with COVID-19. Heart. 2020;106(17):1324-31. doi:10.1136/heartjnl-2020-317355.
15. Deng Q, Hu B, Zhang Y, et al. Suspected myocardial in-jury in patients with COVID19: Evidence from front-line clinical observation in Wuhan. China Int J Cardiol. 2020;15(311):116-21. doi:10.1016/j.ijcard.2020.03.087.
16. Wolters AEP, Wolters AJP, van Kraaij TDA, et al. Echocardiographic estimation of pulmonary hypertension in COVID-19 patients. Neth Heart J. 2022;30:1-5. doi:10.1007/s12471-022-01702-x.
17. Caravita S, Baratto C, Di Marco F, et al. Haemodynamic characteristics of COVID-19 patients with acute respiratory distress syndrome requiring mechanical ventilation. An invasive assessment using right heart catheterization. Eur J Heart Fail. 2020;22(12):2228- 37. doi:10.1002/ejhf.2058.
18. Li Y, Li H, Zhu S, et al. Prognostic Value of Right Ventricular Longitudinal Strain in Patients With COVID-19. JACC Cardiovasc Imaging. 2020;13(11):2287-99. doi:10.1016/j.jcmg.2020.04.014.
19. Corica B, Marra AM, Basili S, et al. Prevalence of right ventricular dysfunction and impact on all-cause death in hospitalized patients with COVID-19: a systematic review and metaanalysis. Sci Rep. 2021;11(1):17774. doi:10.1038/s41598-021-96955-8.
20. Rossi R, Coppi F, Monopoli DE, et al. Pulmonary arterial hypertension and right ventricular systolic dysfunction in COVID-19 survivors. Cardiol J. 2022;29(1):163-5. doi:10.5603/CJ.a2021.0159.
21. Tudoran C, Tudoran M, Lazureanu VE, et al. Evidence of Pulmonary Hypertension after SARS-CoV-2 Infection in Subjects without Previous Significant Cardiovascular Pathology. J. Clin. Med. 2021;10:199. doi:10.3390/jcm10020199.
22. Beyerstedt S, Casaro EB, Rangel ÉB, et al. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis. 2021;40:905-19. doi:10.1007/s10096-020-04138-6.
23. Gomolak JR, Didion SP. Angiotensin II-induced endothelial dysfunction is temporally linked with increases in interleukin-6 and vascular macrophage accumulation. Front Physiol. 2014;5:396. doi:10.3389/fphys.2014.00396.
24. Kadiyska T, Tourtourikov I, Dabchev K, et al. Role of endothelial dysfunction in the severity of COVID-19 infection (Review). Mol Med Rep. 2022;26:351. doi:10.3892/mmr.2022.12867.
25. Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked. Sci China Life Sci. 2020;63(3):364-74. doi:10.1007/s11427-020-1643-8.
26. Kumar R, Graham B. How does inflammation contribute to pulmonary hypertension? Eur Respir J. 2018;51:1702403. doi:10.1183/13993003.02403-2017.
27. Sims JT, Krishnan V, Chang CY. Characterization of the cytokine storm reflects hyperinflammatory endothelial dysfunction in COVID-19. J Allergy Clin Immunol. 2021;147(1):107-11. doi:10.1016/j.jaci.2020.08.031.
28. Ruhl L, Pin I, Kühne JF, et al. Endothelial dysfunction contributes to severe COVID-19 in combination with dysregulated lymphocyte responses and cytokine networks. Sig Transduct Target Ther. 2021;66:418. doi:10.1038/s41392-021-00819-6.
29. Potus F, Mai V, Lebret M, et al. Novel insights on the pulmonary vascular consequences of COVID-19. Am J Physiol Lung Cell Mol Physiol. 2020;319:L277-L288. doi:10.1152/ajplung.00195.2020.
30. Varga Z, Andreas JF, Peter S, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-8. doi:10.1016/S0140-6736(20)30937-5.
31. Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18:844- 7. doi:10.1111/jth.14768.
32. Mondal S, Quintil AL, Karamchandani K, et al. Thromboembolic disease in COVID-19 patients: A brief narrative review. j intensive care. 2020;8:70. doi:10.1186/s40560-020-00483-y.
33. Tan BK, Mainbourg S, Friggeri A, et al. Arterial and venous thromboembolism in COVID-19: a study-level meta-analysis. Thorax. 2021;76:970-9. doi:10.1136/thoraxjnl-2020-215383.
34. Purroy F, Arqué G. Influence of thromboembolic events in the prognosis of COVID-19 hospitalized patients. Results from a cross sectional study. PloS one. 2021;16(6):e0252351. doi:10.1371/journal.pone.0252351.
35. Gattinoni L, Coppola S, Cressoni M, et al. Covid-19 does not lead to a "typical" acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020;201:1299-300. doi:10.1164/rccm.202003-0817LE.
36. Lang M, Som A, Mendoza DP, et al. Hypoxaemia related to COVID-19: vascular and perfusion abnormalities on dual-energy CT. Lancet. Infect Dis. 2020;20:1365-6. doi:10.1016/S1473-3099(20)30367-4.
37. Ryan D, Frohlich S, McLoughlin P. Pulmonary vascular dysfunction in ARDS. Ann Intensive Care. 2014;4:28. doi:10.1186/s13613-014-0028-6.
38. Bonnemain J, Ltaief Z, Liaudet L. The Right Ventricle in COVID-19. J Clin Med. 2021;8;10(12):2535. doi:10.3390/jcm10122535.
39. Horn EM, Chakinala M, Oudiz R, et al. Could pulmonary arterial hypertension patients be at a lower risk from severe COVID-19? Pulm Circ. 2020;10(2):2045894020922799. doi:10.1177/2045894020922799.
40. Nuche J, Pérez-Olivares C, Segura de la Cal T, et al. Clinical course of COVID-19 in pulmonary arterial hypertension patients. Rev Esp Cardiol (Engl Ed). 2020;73(9):775-8. doi:10.1016/j.rec.2020.05.015.
41. Scuri P, Iacovoni A, Abete R, et al. An unexpected recovery of patients with pulmonary arterial hypertension and SARS-CoV-2 pneumonia: a case series. Pulm Circ. 2020;10(3):2045894020956581. doi:10.1177/2045894020956581.
42. Nuche J, Segura de la Cal T, Jiménez López Guarch C, et al. Effect of Coronavirus Disease 2019 in Pulmonary Circulation. The Particular Scenario of Precapillary Pulmonary Hypertension. Diagnostics (Basel). 2020;10(8):548. doi:10.3390/diagnostics10080548.
43. Lee JD, Burger CD, Delossantos GB, et al. A Survey-based Estimate of COVID-19 Incidence and Outcomes among Patients with Pulmonary Arterial Hypertension or Chronic Thromboembolic Pulmonary Hypertension and Impact on the Process of Care. Ann Am Thorac Soc. 2020;17(12):1576-82. doi:10.1513/AnnalsATS.202005-521OC.
44. Belge C, Quarck R, Godinas L, et al. COVID-19 in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: a reference centre survey. ERJ Open Res. 2020;6(4):00520-2020. doi:10.1183/23120541.00520-2020.
45. Montani D, Certain M-C, Weatherald J, et al. COVID-19 in Patients with Pulmonary Hypertension: A National Prospective Cohort Study. Am J Respir Crit Care Med. 2022;206(5):573-83. doi:10.1164/rccm.202112-2761OC.
46. Mamzer A. Waligora M, Kopec G, et al. Impact of the COVID-19 Pandemic on Pulmonary Hypertension Patients: Insights from the BNP-PL National Database. Int. J. Environ. Res. Public Health. 2022;19:8423. doi:10.3390/ijerph19148423.
47. Farmakis IT, Karyofyllis P, Frantzeskaki F, et al. Incidence and outcomes of COVID-19 in patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: Data from the Hellenic pulmonary hypertension registry (HOPE). Hellenic J Cardiol. 2022;64:93-6. doi:10.1016/j.hjc.2021.10.002.